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ABSTRACT

A theory is presented which indicates that the quasi-biennial oscillation of the zonal wind in the tropical
stratosphere is a result of the interaction of long-period, vertically propagating gravity waves with the zonal
wind. We discuss the theoretical basis and observational evidence for the existence of long-period gravity
waves near the equator, and the mechanism of their interaction with the zonal wind, and present some simple
numerical results which show how the absorption of the momentum of these waves by the mean flow leads
to a downward propagating zonal wind profile. It is shown that the interaction of these gravity waves with
the observed semiannual zonal wind oscillation above 40 km will produce a downward propagating quasi-
biennial oscillation. We present the results of several numerical experiments with a model of the tropical
stratosphere which includes the gravity wave interaction mechanism. The quasi-biennial oscillation is simu-
lated quite successfully. Finally, we discuss possible observational checks for our model, and some of its im-

plications for tropical dynamics.

1. Introduction

The observed properties of the quasi-biennial oscilla-
tion in the zonal wind field of the tropical stratosphere
have been analyzed in detail by Reed (1964) and
Wallace (1967a). The observations indicate a number
of peculiar features which a satisfactory theory of the
oscillation must be able to explain. In particular, zonally
symmetric easterly and westerly wind regimes alternate
regularly with a period varying from about 24-30
months. Successive regimes first appear above 30 km,
but propagate downward at an average rate of 1 km
month™. Rocket data give evidence of the existence of
the oscillation above 30 km (Reed, 1965). Its phase
speed, in this region, appears to be much greater than
1 km month~. The downward propagation occurs with-
out loss of amplitude between 30 and 23 km, but there
is rapid attenuation below 23 km. These fluctuations
are symmetric about the equator with a half-width of
about 12° latitude and an amplitude of about 20 m sec
at the equator.

Previous theoretical models of the quasi-biennial
oscillation have invoked a variety of mechanisms in
attempting to account for the origin, dynamics and
structure of this phenomenon, but nonehavesuccessfully
explained the three most striking features of the oscilla-
tion: 1) the approximately biennial periodicity, 2) the
downward propagation without loss of amplitude, and
3) the occurrence of zonally symmetric westerlies at
the equator.

1 Contribution No. 175, Dept. of Atmospheric Sciences, Uni-
versity of Washington, Seattle,

Most attempts to explain the periodicity have been
based on an assumed biennial oscillation in either the
diabatic heating rate or the horizontal eddy momentum
flux divergence. The theories of Staley (1963) and
Lindzen (1965, 1966) are in the former class, while the
numerical model of Wallace and Holton (1968) is of
the latter class. The impossibility of a radiative forcing
was demonstrated by Wallace and Holton (1968), who
showed that the observed amplitude of the oscillation
can be simulated through radiative forcing only if the
oscillation in the diabatic heating rate has a magnitude
of nearly 1.5°C day~! at the equator. This is more than
an order of magnitude greater than the response calcu-
lated by Lindzen (1965) for a 109 change in the solar
ultraviolet insolation. A physical explanation for the
extremely large diabatic heating rate required in a
radiatively driven model has been provided by Wallace
(1967b). He pointed out that the ratio of kinetic energy
to available potential energy is very large in the tropical
stratosphere. Thus, the conversion of available potential
energy to kinetic energy in a radiatively driven model
would quickly exhaust the supply of available potential
energy unless strong diabatic heating was continually
replenishing the supply of available potential energy.
Therefore, the forcing is apparently of a dynamical
rather than thermal nature. However, although some
observations (Wallace and Newell, 1966) indicate a
biennial periodicity in the horizontal eddy momentum
fluxes in middle latitudes above 30 mb the evidence for
these fluxes in tropical latitudes is not very convincing,
and the amplitude of such variations is probably too
small to account for the quasi-biennial oscillation.
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Furthermore, models based on the above mechanisms
all share a crucial defect—the inability to propagate the
oscillation away from the region of forcing without
substantial loss of amplitude. For example, the models
of Staley (1963) and Dickinson (1968) both postulate a
diffusion wave type of propagation away from a forcing
region above 30 km, and in both these models the
oscillation damps rapidly below 30 km. Another possible
mechanism for vertical propagation which has been
discussed by Tucker (1964) is vertical advection of the
zonal wind by a mean subsidence throughout the
tropical stratosphere. Wallace and Holton (1968)
demonstrated with their diagnostic numerical model
that a wide region of subsidence, as proposed by Tucker,
would by continuity require a strong equatorward
meridional flow, and consequent unrealistically large
mean easterlies a few degrees from the equator. Wallace
and Holton were able to obtain somewhat more realistic
results by confining the mean subsidence to within a
few degrees of the equator and allowing horizontal
diffusion to spread the downward propagating oscilla-
tion away from the equator; this mechanism, however,
caused rather rapid attenuation of the oscillation.

We conclude that the above models are all incorrect
in their basic assumption that the quasi-biennial oscilla-
tion is the result of propagation of a disturbance away
from a forcing region above 30 km. The extensive
numerical experiments of Wallace and Holton have
indicated beyond reasonable doubt that only a forcing
mechanism which itself propagates downward can
account for the observed constant amplitude propaga-
tion between 30 and 23 km. The purpose of the present
paper is to demonstrate that long-period vertically
propagating gravity waves are able to provide this sort
of forcing, and can also explain the quasi-biennial
periodicity as well as providing a source for westerly
momentum generation at the equator.

In Section 2 we briefly present our theoretical reasons
for expecting long-period gravity waves in the neighbor-
hood of the equator. We also describe the present
status of observational evidence on this matter.
In Section 3 we outline the results of Booker and
Bretherton (1967) on the interaction of a vertically
propagating gravity wave and the mean flow at a
critical level where the horizontal phase speed of the
waves relative to the mean flow is zero. These results
are extended to the problem of the interaction of waves
with a continuous distribution of phase speeds with the
mean flow. A simple formula for the change in the mean
flow is obtained under the assumption that the mean
flow changes slowly compared to the wave periods. In
Section 4 some examples are given of how the interaction
of gravity waves with a mean flow can cause a given
velocity profile in the mean flow topropagatedownward.
In Section 5 we give a qualitative description of how a
spectrum of gravity waves interacting with the observed
semiannual oscillation in the equatorial zonal wind
above 40 km can produce a quasi-biennial oscillation
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below 40 km. The physical meaning of the longer
period is explained. In Section 6 a description is given of
a simplified version of the numerical model of the
equatorial stratosphere developed by Wallace and
Holton (1968) which has been modified to include the
gravity wave-mean flow interaction. The results of
numerical simulations of the quasi-biennial oscillation
with this model are given in Section 7. Finally, in
Section 8, we describe some observationally verifiable
predictions resulting from our model.

2. Equatorial gravity waves

A theory of the quasi-biennial oscillation based on
the interaction of gravity waves with the mean flow,
while interesting, would be academic unless we had
some reason for expecting strong gravity waves to
exist preferentially at the equator. The theoretical
basis for this expectation is described in Lindzen (1967).
Briefly, we expect that in the troposphere there will be
a continuous excitation of planetary-scale disturbances
by the effects of orography and the mutual adjustments
of the wind and pressure fields. The question of whether
such disturbances can propagate vertically was treated
by Charney and Drazin (1961) who, adopting a quasi-
geostrophic approximation suitable for mid-latitudes,
found that disturbances could propagate only when
their phase speed was westward relative to the mean
zonal flow, but less than some maximum easterly speed
whose value rapidly diminished with increasing hori-
zontal wavenumber. Thus, the bulk of large-scale
disturbances would appear to be vertically trapped. The
quasi-geostrophic approximation assumes that the
period of the waves is much longer than the pendulum
day. The trapping found by Charney and Drazin is, in
fact, due to the same mechanism whereby waves in a
stratified, plane, rotating fluid are trapped when their
frequency is less than twice the rotation rate (Eckart,
1960). Their ability to propagate under certain circum-
stances is due to the variation of the vertical component
of rotation with latitude, i.e., the beta effect. As one
approaches the equator the length of the pendulum day
approaches infinity. Thus, the basis for the quasi-
geostrophic approximation (as applied to oscillatory
motions) breaks down, and one might expect that for a
disturbance of any period and zonal wavenumber there
will exist some region about the equator where the dis-
turbance can propagate vertically. That this is so, is
shown in Lindzen (1967). These disturbances propagate
primarily as internal gravity waves. However, the
gravest eastward propagating mode, symmetric about
the equator, is a Kelvin wave (Matsuno, 1966; Holton
and Lindzen, 1968), which for our purposes can be
considered a particular kind of internal gravity wave.
The gravest westward propagating mode, antisym-
metric about the equator, propagates as a mixed
internal gravity-Rossby wave (Matsuno, 1966; Maru-
yama, 1967; Lindzen and Matsuno, 1968) whose
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properties are distinctly different from those of internal
gravity waves. The degree to which vertical propagation
is confined to the equator is determined by the hori-
zontal wavenumbers and the Doppler shifted frequency
of a given disturbance; for meteorologically relevant
parameters (period ~5 days, zonal wavenumber ~3)
propagation is confined to within about 10°-15° of
the equator. Most modes propagate vertically with very
short vertical wavelengths, typically 2 km or less. Such
modes could not be resolved with presently available
data. Only the Kelvin mode and the gravest antisym-
metric mode are expected to have significantly longer
vertical wavelengths (~4-20 km), and examples of
both these modes have been isolated in the data
(Maruyama, 1967; Wallace and Kousky, 1968). The
data may be interpreted as showing that there is nothing
intrinsically unlikely about the assumed generation and
propagation of the above described waves. However,
the actual existence of a wide spectrum of such waves
must, for the moment, be taken as conjecture.

3. Absorption of gravity waves at critical levels

The wvertical propagation of gravity waves in a
medium where there is a mean wind with shear has been
studied by a number of people. The important results
for our purposes are found in papers by Eliassen and
Palm (1960) and Booker and Bretherton (1967).

Let the waves have a wavenumber %2 and a real
phase speed ¢ in some horizontal direction x. Let the
basic low U be in the z direction, and let U be a
function only of altitude z. Primed quantities will refer
to wave fields, and overbars will refer to averages with
respect to x and ¢ It was shown in Eliassen and Palm

that p"w’ (where p’ and w’ are the pressure and vertical
velocity fields associated with the wave) is the upward
energy flux due to the wave, and that pe(2)2/'w’ (where
po is the basic density distribution, and #’ is the velocity
field in the x direction associated with the wave) is the
upward flux of momentum in the x direction due to the
wave. The following important relations were derived
by Eliassen and Palm:

pw'=—po(U—c)u'w'. (1)
If Us#c, then
po'w’ is independent of z. (2)

Let x represent the west-to-east direction, and let our

wave source be below our region of interest. Then p'w’
will be positive and (1) states that waves whose phase
speeds are westerly relative to U will carry westerly
momentum upward, while waves whose phase speeds
are easterly relative to U will carry easterly momentum
upward. Relation (2) states that in the absence of a
critical level where U=¢, none of this momentum will
be deposited in the mean flow. Eliassen and Palm do not
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deal with the problem of what occurs at a critical level.
However, from (1) and (2) it is clear that something

striking must happen. For example, assuming p'w’
remains positive as a wave goes through a critical level,
then (2) certainly cannot remain true. Eq. (1) suggests

that pow'w’ must, in fact, change sign, implying a large
exchange of momentum between the wave and the mean
flow. Recently, Booker and Bretherton (1967) have
solved the problem of the behavior of internal gravity
waves at critical levels. Their results confirm the above
picture. Let the wave source be below the critical level
and let

pot'w’ = A 3)

below the critical level. Booker and Bretherton show
that

pot'w' = — A exp(—2rVRi—1) (4)
above the critical level, where
g /9Ty g
;(7+‘,;)
4 [4
Riz (5)

()

0z

the Richardson number, is generally greater than 1; in
such cases we see from (4) and (2) that the wave is
almost completely absorbed by the mean field at the

critical level. From (3) and (4) we see that an amount
of momentum given by

A[1+exp(—2aVRi—1)]

is absorbed at the critical level, and as Booker and
Bretherton note, the absorption of a finite momentum
by a single level must lead to difficulty. The difficulty
arises, as also shown by Booker and Bretherton, from
the assumption that a wave with finite energy and a
single phase speed ¢ will propagate for an infinite
length of time through a medium with an unchanging
basic velocity distribution having a critical level. There
are several ways of circumventing this difficulty. The
way which is relevant to this paper is to assume that
the disturbances consist of a spectrum of waves with a
continuous distribution of phase speeds, i.e.,

b = / fO)e, ©)

where f(c)dc is the momentum flux due to waves of all
wavenumbers % having phase speeds between ¢ and
c+de. In writing (6) it is assumed that if ' is associated
with a wave of one value of ¢, and w’ with a wave of

another value, then the average «'w’ will be zero. It
follows from integrating (2) with respect to & that f(c)
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¥16. 1. Geometry of the critical layer absorption process
for westerly shear (A), and easterly shear (B).

will be independent of z in any region where Usc.
If f(c)=A below a critical level, it will go to
—A4 exp[—2rVRi—1] above, as shown by (3) and (4).
However, as long as f(c) is finite, an infinitesmal layer
will never absorb more than an infinitesmal amount of
momentum. Unless otherwise indicated, f(c) will refer
to the distribution pe/w’ (i.e. Reynold’s stress) at the
base of the region of interest.

We now proceed to the derivation of a simple formula
for the deposition of momentum in the mean flow by
gravity waves. Consider first the case shown in Fig. 1a
where dU/dz is positive. At a height 2o, U= U,. The
amount of momentum absorbed (per unit time) in the
altitude range dz will be

FU[1+exp(—2nVRi(z0)—§) |4V, M

and the momentum flux divergence at 2, is given by

dFuw av
T U 1+exp(— 2RI GGo)— D) ] ;
Z

dz

, (8

where Fyw is the momentum flux due to waves, the
result being independent of the sign of dU/dz. More-
over, waves whose critical level is at z will be westerly
relative to U below z¢; hence, f(U,) is positive. Since
dU/dz is also positive, (8) may be rewritten as

AF uw

= /(U9 |[1+exp(— 21r\le(Zo)——:l-—— )

For the case shown in Fig. 1b, dU/dz is negative.
However, waves whose critical level is at zo will now be
easterly relative to U below 2z; hence, f(Uy) is also
negative, and, (9) is therefore correct for this case as
well. For conciseness we may rewrite (9) as

(10)

where f(U)=|f(U)|[14exp(—2rVRi(z))—3)] and
f(U) is always positive. Eq. (10) is appropriate regard-
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less of the sign of the shear, and is based on the treat-
ment by Booker and Bretherton (1967) wherein it was
assumed that U(z) is independent of time. Although
there are no such flows in nature (the existence of
momentum flux divergence also implying that U will
change in time), we shall assume that the changes in
U will occur sufficiently slowly for (10) to remain valid
at any given moment. In the present context this
amounts to assuming that 26 months is sufficiently
longer than a few days to make U appear steady to
waves of the latter period. If this is the case, the equa-
tion for mean momentum in the & direction becomes

aUu au
( +W—é~>=—f(U)———+otheL terms, (11)

4

When the nonlinear term on the left-hand side of (11)
and the “other terms” are neglected, (11) describes the
downward propagation of a distortion in U. The speed
of propagation is given by — f(U)/po. It should be noted
that if U is such that U(z)=U(z), 21>%, and
U(2)5= U(z0), 21> 2> 20, then
f(U,m)=f(U,z0)exp{—2rVRi(z0)—1}.  (12)

The above discussion is based entirely on gravity
waves in a nonrotating fluid. The reader should keep in
mind that in applying the above considerations to a
theory of the quasi-biennial cycle we are assuming that
a similar critical-level absorption mechanism exists for
the rotationally influenced equatorial internal gravity
waves described in Section 2. It is shown in Lindzen and
Matsuno (1968) that this is, in fact, unlikely for the
mixed gravity-Rossby mode. However, all the remain-
ing modes are so similar to conventional gravity waves
as to suggest that the above theory is at least approxi-
mately applicable. Some additional support for this
view is provided by the work of Jones (1967) who
studied critical-level absorption for gravity waves in a
plane rotating fluid. His results were almost identical to
those of Booker and Bretherton (1967). However, he
found that Eq. (2) of the present paper was slightly
modified (angular momentum replacing linear momen-
tum) and critical-level absorption took place where
U—c=|f/k|(where fis twice the fluid’s rotation rate
and k is the zonal wavenumber), rather than where
U—c¢=0. Such modifications are significant, but for
present considerations (especially near the equator
where f=0) we feel they are likely to produce only
secondary effects.

Finally, we should mention that (10) may be more
general than we have indicated since it depends only on
the existence of some critical level absorption mecha-
nism, not necessarily the one described by Booker and
Bretherton (1967). Hines and Reddy (1967) show, for
example, that the existence of dissipation will lead to
critical level absorption, quite apart from the Booker
and Bretherton mechanism.
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In the next section we present some simple examples
of changes in a mean flow resulting from gravity wave
absorption.

4. Simple examples

In order to apply Eq. (11) we must know the func-
tional form of f(U). Neither observations nor theory
are yet adequate for the detailed specification of this
form for the equatorial gravity waves described in
Section 2. However, observations do suggest that the
bulk of wave energy is associated with phase speeds
between about 3=20 m sec™!. The simplest choice for
f(U), consistent with this, is

f(U)=constant, —¢,<U<¢,
f()=0, a<|ulV’

where ¢,, a positive constant, is a high-frequency cutoft
for the wave spectrum.

Our first example is for a situation where local time
changes in U are due solely to wave absorption. Eq. (11)
becomes

(13)

aU 1

po—=—f(U)—.
ot 9z

(14)
At t=0 we let U= A+ Bz, where 4=—20 m sec™! and
B=% m sec?* km™, and the vertical distribution for
po is taken from the equatorial standard atmosphere.
From (13) with ¢,=5 m sec™}, we have
f(UY=po(27 km)-1 km month™, —c,<u<c,,
where we have ignored the term exp(—2xVRi—1}) in
(10), which is equivalent to assuming a very high
Richardson number. This is certainly the case initially.
The solution for this case, obtained numerically, is
shown in Fig. 2; =0 is arbitrarily identified with
1 April 1960. We note the following important features:

1) Only the region between 22.5 and 37.5 km, where
the mean wind is between —35 and +5 m sec™, is
affected by wave absorption.

2) Since dU/dz is positive, wave absorption causes
the addition of westerly momentum. However, the
maximum velocity which can be produced is 5 m sec™.
The mechanism ceases to operate for greater velocities.

3) Wave absorption causes the level at which U=5m
sec™? to descend at a rate given approximately by
(1 km month™) [po(27 km)/po(z)]. Thus, the level
descends about 8.5 km from 1 April to 6 July; it
descends another 3.5 km by 14 October; by 13 March
it has descended only an additional 1.5 km. As long as
the Richardson number >1, the lowest level at which
U=35 m sec™! effectively shields the region above from
the waves. This is independent of the distribution of U
in the region above.
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F16. 2. Numerical results for the time variation of zonal velocity
profiles in the case where local time changes in U depend only on
the wave absorption mechanism.

The above are the three most fundamental features
of our mechanism; they are essential to all our applica-
tions. A fourth feature, peculiar to the above example,
should, however, be mentioned.

4) The level at which U=5 m sec™ cannot descend
below 22.5 km. Thus, in the absence of dissipative
processes, a discontinuity in U will form at 22.5 km,
and we will, once more, have the problem, albeit an
artificial one, of an infinitesmal layer absorbing a finite
amount of momentum.

The shielding effect, mentioned above, is better seen
in the next example where, in addition to the processes
involved in our first example, we introduce a restoring
force in the form of a Rayleigh friction which attempts
to maintain the initial distribution of U. In this case
Eq. (11) becomes

oU oU
pr—=—f(U)—+K[U(=0)-U], (15)
ot a3

where K=po(27 km)X (365 days)™., all other param-
eters being the same as in the first example. The numeri-
cally obtained solution is shown in Fig. 3. Again, the
level at which U=5 m sec™ descends. However, now
the region above, shielded from the action of the waves,
relaxes to its initial form. For our particular choice of
K the relaxation is rather slow, but eventually we will
be left with the initial profile except for a “spike’ just
above 22.5 km. What will happen now cannot be stated
with certainty; however, the ingredients of a possible
oscillation mechanism are evident. Let us assume that
when the spike becomes sharp enough, it breaks down.
There will then be no “shield” due to the spike, and
presumably something close to the initial profile will
be restored. The whole process will then begin again,
forming a relaxation oscillation whose period depends
on K, f(U) and the initial 8U/3z (i.e., the distance
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F16. 3. Same as Fig. 2 except that a Rayleigh friction which tends
to restore the initial profile in U is included.

between the levels where U=+35 and —5 m sec™), and
whose amplitude depends on the range of phase speeds
over which f is non-zero.

In the following sections we will show how, for the
conditions obtaining in the equatorial stratosphere, an
oscillation may be obtained without recourse to an
arbitrary relaxation procedure.

5. Qualitative description of a model for the quasi-
biennial oscillation

In Sections 6 and 7 we will describe the incorporation
of the wave absorption mechanism into a reasonably
comprehensive numerical model of the tropical strato-
sphere. In order to better understand the results of
these rather complex calculations, it seems best to
isolate beforehand those features of the model which
are essential to the generation of the quasi-biennial
oscillation and show, qualitatively, their roles.

The first important feature is the assumption that a
spectrum of gravity waves, with horizontal phase
speeds between —20 and 420 m sec™! propagates
upward from a region below some level in the lower
stratosphere. The range of phase speeds is most simply
incorporated by using Eq. (13) with ¢,=20 m sec™.

The second important feature is the existence in the
equatorial upper stratosphere of a strong semiannual
oscillation in zonal wind. This oscillation is described
in detail by Reed (1966). While no complete theory
has been presented for this oscillation, it is not hard to
rationalize a six-month oscillation at the equator at
levels where insolation absorption is important. This
feature is incorporated by forcing the top level, 40 km,
to oscillate with a six-month period.

The third feature is the assumption that the gravity
waves are generated in the neighborhood of the tropo-
pause. The observational basis for this assumption is
meagre, primarily the finding by Yanai et al. (1968)
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that the peak energy density of equatorial waves occurs
near the tropopause. We incorporate this feature into
our model in the following way : As shown in Section 4
the interaction of waves with the mean flow causes a
“velocity ledge” (i.e., a zone of strong wind shear) to
descend. We simply shut off the shielding effect of this
ledge when the middle of the ledge descends below 19
km. When the ledge is above 19 km it effectively shields
the region above it from the action of waves.

How the above three features could combine to pro-
duce a quasi-biennial oscillation is shown in Figs. 4a—k.
We take the constant in (13) to be such that a ledge
descends from 40 to below 19 km in 15 months. This
choice leads to what we shall call a synchronized oscilla-
tion. The reason for this terminology will be explained
later. Let us assume at time ¢{=0 that the semiannual
oscillation is in its westerly phase and that the region
is in an easterly phase. This is the situation in Fig. 4a.
Since dU/ 9z is positive, wave absorption will cause the
descent of a westerly ledge, and this ledge shields the
region above from the further action of waves. Thus, the
region above will continue to execute a semiannual
oscillation. This situation is depicted schematically in
Figs. 4b—e. When ¢{=15 months, the middle of the
westerly ledge is below 19 km and we assume that the
waves can again propagate upward; this is shown in
Fig. 41, the semiannual oscillation being in its easterly
phase. Hence, dU/9z is negative and wave absorption
causes an easterly ledge to descend while the upper
region continues to execute a semiannual oscillation.
This is shown in Figs. 4g-4j. Finally, when t=30
months (Fig. 4k), the middle of the easterly ledge has
descended below 19 km and the semiannual oscillation
is in its westerly phase; the whole process can now
begin anew. The reason for calling the above sequence
asynchronized oscillation should now be clear: when the
middle of a westerly ledge descends below 19 km, the
semiannual oscillation is in its easterly phase; and when
the middle of an easterly ledge descends below 19 km,
the semiannual oscillation is in its westerly phase.
Synchronization requires a ‘Jedge” to descend from
40 km to below 19 km in (2Zm+1)X3 months
(m=0, 1, 2, 3---). Assuming easterly and westerly
ledges can descend at different rates, we find that
synchronous oscillations can take place with periods of

Ton=(p+1)X6 months, p=0,1,2,---. (16)
The period is merely the sum of the times it takes for
the wave interaction to bring a westerly and an easterly
ledge from 40 km to below 19 km. The observed wave
amplitudes in the data analysis of Wallace and Kousky
(1968) are consistent with a momentum flux which
suggests that p is around 3 or 4. An average period of
26 months would result from two 24-month oscillations
and one 30-month oscillation.

What happens when we do not have synchronization
is shown in Fig. 5. The oscillation is merely delayed for
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F16. 4. A schematic time sequence illustrating the proposed theory of the quasi-biennial oscillation for the synchronous case
at three-month intervals from 0-30 months, (a) —(k). Vertical arrows indicate gravity wave propagation. Shaded regions are

shielded from the waves. See text for details.

a length of time up to 3 months until synchronization is
re-established. In the meantime, the gravity waves
simply continue to propagate upward beyond 40 km.

That this rather novel mechanism is apparently con-
sistent with the observational evidence may be seen in
the time-height section of Fig. 6. We note that the
westerly regimes in the quasi-biennial oscillation are
clearly synchronized with the westerly phase of the
semiannual oscillation.

Before proceeding to a description of our numerical
model let us briefly review the parameters which deter-
mine the characteristics of the oscillator in our model:

1) The period of the oscillation is determined by
a) the upward flux of momentum due to gravity waves
which can, but need not be, a statistically steady quan-
tity; and b) the distance between the region dominated
by the semiannual oscillation and the region of wave
generation.

2) The amplitude of the oscillation is determined by
the range of phase speeds over which we have a signifi-
cant energy density of gravity waves.

4
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F16. 5. Schematic illustration of gravity wave escape for
non-synchronous oscillation. See text for details.
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F16. 6. Time-height section of zonal wind at 8° latitude with annual cycle removed. Solid isotachs are
placed at intervals of 10 m sec™*. Shaded areas indicate westerlies. Below 35 km monthly mean rawinsonde
data for the Canal Zone (9N) and Ascension Island (8S) were averaged together to remove all fluctua-
tions with odd symmetry about the equator. Above 34 km, this procedure could not be used because
rocket data were available for Ascension Island only. At these levels the annual cycle was removed by
harmonic analysis. Some minor smoothing was done to make the analyses compatable at 35 km. Figure

prepared by J. M. Wallace and V. E. Kousky.

It should finally be added that the above, while
containing the basic features of our mechanism, is
merely a schematic description. As we shall see in the
following sections, a more realistic treatment contains
differences in details.

6. The numerical model

The basic equations of the model are a simplification
of the set developed by Wallace and Holton (1968).
The details of the derivation will not be repeated here.
Wallace and Holton showed that in nondimensional
form the zonal momentum, thermal wind, thermo-
dynamic energy, and continuity equations could be
written as follows:

ou Ou  Ou
—t r—"Fw—— fo=F—G, (17)
a dy 9z

du 386

f—t—=0, (18)

dz dy

a6 o0 RO a6\ w
“popu = )+o=—Pre, ()
a  dy cp 09z €

v <]

—+e*—(e7w)=0. (20)

dy 9z

Here, ¢ is time dimensionalized by 7, the annual period;
v is the northward distance dimensionalized by L, the
latitudinal half-width of the oscillation (~2000 km);
z is the vertical coordinate dimensionalized by H, the
scale height; % is the zonal velocity dimensionalized by
2Q(singo) L, where  is the angular velocity of the earth
and ¢, is a convenient reference latitude (say, 6N)
chosen to make # order unity; v is the meridional
velocity dimensionalized by 7/L; w is the vertical
velocity dimensionalized by 7/H ; and 6 is the deviation
of temperature from its horizontal average dimensiona-
lized by [2Q(singo)L /R, where R is the gas constant.
The remaining symbols in (17)-(20) are c,, the specific
heat at constant pressure; f=sing/singo, where ¢ is
the latitude; and ¢ the static stability parameter,
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defined by
[2Q(singpo) L

/R dInT,
gH(—+ )
Cp dz

)

where T is the horizontally averaged temperature.

The source terms on the right-hand side in (17) and
(19) are defined as follows: F and G are the frictional
dissipation due to small scale eddies, and the zonally
averaged divergence of the eddy momentum flux, re-
spectively, dimensionalized by [ 7/2Q(singo)L J™; and P
and Q are the eddy heat flux and the rate of
diabatic heating, respectively, dimensionalized by
[2Q(singo) L/ R.

In the stratosphere where e<<1, (19) may be greatly
simplified for long-period oscillations by neglecting
terms of order e and obtaining a simple balance between
the adiabatic cooling by vertical motion and diabatic
heating by radiation. Thus,

w=¢(). (21)

We assume that the diabatic heating rate Q may be
approximated by Newtonian cooling, so that

Q=ke(ee'—0);

where 6, is the (nondimensional) radiative equilibrium
temperature and £, an inverse radiative relaxation time
dimensionalized by the annual period. We can then
combine (18) and (21) to obtain

*Y 9, Ju
—= exe< —}—f~>€”,
ay? ay dz

(22)

where ¥ is a meridional mass transport streamfunction

defined by the relations
o

—— — -—-zv’

o

—=¢ %, 23
dz dy @)

Eqgs. (17) and (22) together with the definitions (23)
form a complete set for prediction of the evolution of
the zonal and meridional flow, provided that the forcing
functions F, G and 8, are specified. A linearized version
of this system was discussed by Dickinson (1968). In
the present model G represents the critical layer absorp-
tion of vertically propagating gravity waves which we
parameterize in terms of the zonal wind shear as
explained in Section 3. We represent dissipation by
small-scale eddies as an eddy diffusion process by letting

1 0%
F=—n—4
Re, 022

1 0%
Re, 6y2’

where Re,= H?/7K . and Re,=1%/7K,,, with K,, and
K,, the vertical and horizontal eddy diffusivities,
respectively.
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A finite difference analog to a linearized version of
these equations has been formulated by Holton (1968).
The numerical solutions described in the next section
were obtained using a straightforward extension of his
scheme. We compute the dependent variables # and ¥
at the points of a rectangular grid which extends
laterally from the equator to 26N in 1° intervals, and
vertically from 1640 km in 1-km intervals.

Boundary conditions are applied such that 1) ¥=0
at the equator and 26N, 2) #=0 at 16 km and at 26N,
3) 0u/dy=0 at the equator, and 4) wu=-cos(4wt)
Xexp(—¢?/289) at 40 km, where ¢ is the latitude in
degrees. Thus, a semiannual oscillation in the zonal
wind is imposed as the upper boundary condition.

7. Numerical results

We have carried out several numerical integrations to
test our proposed mechanism for explaining the cause
and dynamics of the quasi-biennial oscillation. In each
of the four numerical experiments described below the
equations were integrated for 16 years using time steps
of 3.75 days. In all of our experiments 6, was assumed
independent of latitude. The radiative relaxation time
was allowed to vary inversely with height from 60 days
at 16 km to 7.5 days at 40 km. The eddy diffusion
coefficients were assigned the values K,,= 10? cm? sec™?
and K,,=5X107 em? sec™l. The semiannual oscillation
at 40 km was set at 20 m sec™! amplitude at the equator.

a. Experiment 1. In this experiment the momentum
equation (17) was simplified by omission of the non-
linear advection terms and the Coriolis term. Therefore,
the physical processes included in the model were
essentially only those of the prototype model, i.e.,
critical layer momentum absorption and frictional dissi-
pation. The only latitudinal coupling in the dynamics
is due to the relatively small horizontal momentum
diffusion. Fig. 7 illustrates a time-height section of the
zonal wind at the equator for a 6-year portion of the
integration. The wave spectrum assumed here is the
flat-top distribution of (13) which, in terms of our
nondimensional variables (with %=1 corresponding to
20 m sec™), may be written as

}, (24)

G=exp{z—1.4}9u/93, for —1<u<+1
G=0, for |«|>1,and for the entire shielded

region above the critical layer
where the exponential gives the inverse density depen-
dence normalized to 25 km. Eq. (24) implies a propaga-
tion rate of 1 scale height per year at 25 km. With this
flat-top source and no Coriolis torques or nonlinear
advection terms, the alternating easterly and westerly
wind regimes are quite symmetric in appearance and
propagate downward at about the same rate. The
averaged period in this case is 36 months.

b. Experiment 2. This experiment is similar to the
previous one except that the magnitude of G is doubled
for 0<#<1. Thus, the momentum transport of the
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Fi6. 7. Time-height section of the zonal wind velocity at the equator for Experiment 1.
Solid lines are 20 m sec™! isopleths. Westerlies are shaded. Westerly and easterly phases of the
semiannual oscillation at 40 km are denoted by W and E, respectively.
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Fi1G. 8. Time-height section of the zonal wind at the equator for Experiment 2.
(See legend for Fig. 7).
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F16. 9. Time-height section of the zonal wind at 12° latitude for Experiment 3.
Solid lines are 10 m sec™? isopleths.
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westerly waves is assumed to be double that of the
easterly waves. A six-year portion of the results at the
equator is shown in Fig. 8. The time-height section
indicates, not surprisingly, that the difference in
descent rates between the westerlies and the easterlies
can be accounted for by assuming greater energy in the
westerly waves than in the easterly waves. It is not
necessary to depend on differences in the rate of vertical
advection between the two regimes as proposed by
Wallace (1967a). However, as will be shown in Experi-
ment 4, vertical advection does play a significant role
in the momentum balance. Due to the faster descent
rate of the westerlies, the period of the oscillation in
this experiment was less than in Experiment 1. In this
case the 16-year run indicated alternating 24- and
30-month oscillations, i.e., an average period of 27
months. This variation in period results from the fact
that for the conditions of this model the ‘“natural”
period of the long-term oscillation is not an exact
multiple of six months, so that it is not locked in phase
with the semiannual oscillation. Thus, as is indicated in
Fig. 8, when an easterly regime reaches the cutoff
altitude of 19 km at a time when the zonal velocity is
westerly at 40 km, a new westerly regime will start
downward immediately. But if the easterlies reach 19
km at a time when the zonal velocity is easterly at 40
km, there will be no critical layer for the westerly waves
to encounter. Thus, formation of a new westerly regime
can not begin until the semiannual oscillation returns
to its westerly phase.

HEIGHT (km)
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¢. Experiment 3. This experiment differs from the
above two in that the Coriolis acceleration due to the
meridional motion associated with the oscillation is
included. The results of this run indicate that the
Coriolis effect has a negligible influence near the
equator, but at 12° latitide it reduces the amplitude of
the downward propagating regimes as is readily ap-
parent from Fig. 9. Physically, this effect occurs because
the Newtonian cooling in the model is basically a damp-
ing mechanism which through its coupling with the
meridional circulation acts to diffuse zonal momentum
(Holton, 1968). Since the easterly regimes propagate
more slowly than the westerly regimes, the radiative
damping has a longer time to dissipate the easterly
momentum. Hence, the amplitude of the easterlies
decays away from the source region more rapidly than
that of the westerlies. Note also that Newtonian cooling
causes the semiannual oscillation to diffuse downward
a few kilometers below its source level.

We also note that the 12-year run shown in Fig. 9
indicates that the length of the cycle is somewhat
variable. The mean period for this sample run is about
26 months. This mean period results from an irregular
alternation between 24- and 30-month oscillations.
Thus, the term “quasi-biennial”’ indeed appears to be an
appropriate name for this oscillation.

d. Experiment 4. In this final experiment we have
integrated the full momentum equation (17). The
results are shown in Fig. 10 as time-height sections for
a six-year portion of the run. Results for both the

3
TIME (YEARS)

40EWEWEWEWEWEWEWEWEWE

HEIGHT (km)
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F16. 10. Time-height section of the zonal wind at the equator (a) and 12° latitude (b) for
Experiment 4. Solid lines are 20 m sec™! isopleths in (a) and 10 m sec™? isopleths in (b).
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equator and 12° latitude are displayed in order to
illustrate the latitudinal variation of the nonlinear
terms. Horizontal momentum advection actually plays
a minor role, but is included for completeness. Vertical
advection, on the other hand, has an important moder-
ating influence on the oscillation. In the long term mean
the vertical advection associated with the oscillation
tends to produce westerlies in the lower stratosphere at
the equator, and easterlies away from the equator. In
fact it may be shown that wdu/9z is negative definite
near the equator so that vertical advection will tend to
always produce westerlies at the equator. Note that w
is here the vertical velocity induced by the oscillation
itself. That wdu/dz is always negative at the equator
may be seen as follows: If du/dz>0, then 96/dy<0
from the thermal wind relationship. Therefore, §>6,
and there 1s radiative cooling which must be balanced
by adiabatic warming (w<0). Conversely, when
du/92<0 at the equator, then 96/3y>0, 6<86,, and
w>0. In either case wdu/33<0 so that vertical advec-
tion - produces westerly momentum. This continuous
westerly acceleration must, in the long term, be balanced
by frictional dissipation. In fact, some numerical experi-
ments (not shown here) have demonstrated that there
is a rather sensitive balance between the eddy viscosity
values assumed in the model and the mean westerly
momentum obtained near the tropopause at the
equator. In latitudes more than about 10° from the
equator, the sign of the vertical velocity induced by the
oscillation is opposite to its equatorial value. Thus, in
these regions wdu/dz>0. The 12° latitude time-height
section in Fig. 9 indicates that vertical advection is
sufficiently powerful to produce mean easterlies in the
lower region despite the opposing tendency of the
Coriolis term. This model is therefore able to at least
partly account for the observed mean easterly shear of
the zonal wind with latitude between 0°-12° without
the necessity of invoking horizontal eddy momentum
flux processes. We note that vertical advection also
propagates the westerly phase of the semiannual
oscillation downward a few kilometers near the equator,
while propagation of the easterly phase is suppressed.
Furthermore, the -effective reduction in propagation
velocity of the easterly quasi-biennial regime near the
equator by vertical advection results in an average
period of 30 months in this experiment compared to the
26-month average period of the previous experiment.
This may imply that the wave amplitude assumed in
our model is a slight underestimate of the actual ampli-
tude of the waves in the tropical stratosphere. However,
the arbitrary nature of the 19-km cutoff in this model
makes a closer estimate of the wave amplitude difficult.

8. Conclusions and suggestions

We have presented a mechanism, involving the
interaction of internal equatorial gravity waves with
the equatorial stratospheric zonal wind, which explains
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the following main features of the quasi-biennial oscilla-
tion: the period, the constant amplitude above 23 km,
and the presence of zonally averaged westerly momen-
tum. In our model, the period [Eq. (16)7] is determined
by the upward flux of gravity waves from the tropo-
sphere (a quantity which may be statistically steady).
However, the period must be some multiple of six
months. This period may change from cycle to cycle.
Study of the data in Reed (1967) and Wallace and
Holton (1968) indicates that the time interval between
the appearance of successive westerly regimes at 30 km
tends to be a multiple of six months. (See also Fig. 6.)
This is an important observation, since the prediction
that the periods are multiples of six months is indepen-
dent of most of the assumptions in our model. An
average period of 26 months would, as pointed out in
Section 5, result from two 24-month cycles and one
30-month cycle.

There are a number of observations which could
check various aspects of our model:

1) The rate at which stratospheric easterlies and
westerlies propagate downward should be proportional
to the upward flux of gravity waves at the bottom of the
equatorial stratosphere. It should be possible to obtain

observations of w'p’ for equatorial waves and see
whether there is a correlation between this quantity and
the rate at which westerlies or easterlies are descending.

2) It should be possible to relate observations of
short-period equatorial waves to the length of a given
quasi-biennial cycle. This suggestion is, of course,
related to our first suggestion.

3) As noted in Sections 5 and 7, there will be periods
when the mesospheric semiannual oscillation and the
stratospheric quasi-biennial oscillation are not synchro-
nized. During such periods, equatorial gravity waves
should escape into the upper mesosphere where they
may, perhaps, be observed by either rocket measure-
ments of wind or by radio observations of the D region.

4) A detailed study of the gravity waves described
in Section 2 is necessary. In particular, there is a need
for wind profiles with high vertical resolution in order
to see whether waves other than those described by
Maruyama (1967) and Wallace and Kousky (1968)
are present.

Our theory, itself, needs to be improved and extended
in some of its details: thus, 1) the interaction of gravity
waves with the mean flow should be studied without
assuming separation of scales; 2) the interaction of
gravity waves with the mean flow should be explicitly
studied for gravity waves modified by the earth’s rota-
tion; 3) the means whereby equatorial gravity waves
are excited requires much more study; and finally 4) it
would be satisfying to replace our ed hoc assumption
concerning the cutoff which occurs when a velocity ledge
reaches the region of wave generation with explicit
calculations. This, of course, requires some progress on
item 3).
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It is evident that our theory is far from complete.
It does, however, provide a useful framework for
further study.
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