/------------------------------------------------------------------------------------ / Run : BEACHON-RoMBAS case for Manitou Forest Observatory site for July-August 2011 / Inputs are in Local Time not UTC !!! / purpose: Lagrangian case for C10 with terpenes and isoprene: / starts at 2pm, runs for 3 days / - seed aerosol = 1. ug/m3 / Assumes molwt of 200 g/mol /------------------------------------------------------------------------------------ / / fix number of boxes (use '1') NBOX 2 / thermodynamic icalc for inorg aerosol (0= no calc USE THIS; 1=calcul thermo) SCAP 0 / start time (s): 2pm the 2nd day - 136800 TSTR 136800 / stop time (s): runs for 3 days - 396000 !!REMEMBER TO CHANGE NPAS!!!! TSTP 396000 / requested timestep size in seconds (alternative to NPAS) TLEN 300 /60 / # of calc steps between start & stop (equal step size) / NB: all external parameters remain constant over timestep / # of timesteps per binary output point SKIP 1 /15 / relative tolerance (solver convergence parameter) RTOL 1.0E-1 / absolute tolerance (solver convergence parameter) ATOL 1.0E+2 /------------------------------------------------------------------------------------ / METEO PARAMS /------------------------------------------------------------------------------------ / BOX HEIGHT (cm). HTOP fixes altitude of top of / box 2. The variation de l'altitude de la boite 1 / est donne par le mot cle HBOX. Le nombre suivant HBOX / fixe le nombre de point(temps,hauteur) pour le calcul / de la hauteur de couche de melange. La hauteur est / calcule par interpolation lineaire entre les points. / (search for 'height' in spforcage3 and boxmod) / updated from the new beachon file for 25-30 july 2011. /from the new version of wrfchem HTOP 12.E5 HBOX 3 000000 1.E+5 136800 1.E+5 396000 1.E+5 / / MIXING RATE (advective and/or diffusive) (s-1) / Mixes air in Box 1 with background air in horizontal or vertical direction. / Used the averaged winds at 10m, and the 100km size for the box similar to Julia for Mexico / -----> ALMA : to be tested MIX 4 0 00 136800 0.0 137100 0.0 396000 0.0 / /Not used here : aerosol surface area for heterogeneous reactions (cm2/cm3) AERO 4.0E-5 /time series of number density of non-volatile, unreactive aerosol (molec/cm3) /Alma used = 1ug/m3 at 200 g/mol : 1e-6 / 200 * 1e-6 * 6.023* 1e23 -> 3.1e9 molecules/cc SEED 2 0 3.1E+09 396000 3.1E+09 / temperature (temp): les parametres sont a fixer pour chaque couche TEMP 288 0. 43200 288 0. 43200 / "saison" : cette variable a pour unique but de changer la vitesse / des resistances pour le depot sec. Deux "saisons" sont tabulees : / SEAS =1 : automne avance, apres le gel mais pas de neige au / sol (correspond a la categorie 3 du papier de Wesely, 89) / SAIS =2 : milieu de l'ete avec une vegetation luxuriante (correspond / a la categorie 1 du papier de Wesely, 89) SEAS 2 / / humidite relative (rh): les parametres sont a fixer pour chaque couche / (autant de ligne que de niveau). rh est parametre comme une fonction / sinusoidale du temps. Le premier parametre donne rh moyen (en %), / le second donne l'amplitude, le troisieme le temps pour lequel le / maximum de rh est atteint (en s) / RHUM 30.0 0.0 18000 30.0 0.0 18000 / lecture des proportions des differents environnements types pour la / definition du scenario. 4 environements sont possibles dans la structure / actuelle du code : urbain (URB1), terre cultivee(CULT), foret de / feuillu (FLEA) et foret de conifere (FCON). Le nombre apres le mot / cle SURF donne le nombre de donnee tabule en temps. l'ordre des donnees / est ensuite : temps, URB1,CULT,FLEA,FCON. Aucune ligne de commentaire / n'est autorise entre les donnees. Le dernier temps doit etre plus long / que le temps d'arret de la simulation. La surface est calculee par / interpolation lineaire entre les points SURF 3 000000 0.00 0.00 0.50 0.50 313200 0.00 0.00 0.50 0.50 396000 0.00 0.00 0.50 0.50 / /utilise pour le depot WIND 3.5 1.0 48600. / /------------------------------------------------------------------------------------ / BC/IC and EMISSIONS /------------------------------------------------------------------------------------ / 1st (2nd) column - conc. in lower (upper) box / conversion for BEACHON is 1 ppbv = 1.92228e+10 molec/cc / species list for mechanism BEACHON_C10 / MFO data from PTRMS T. Karl' or Eric Appel except '*' / MFO data from TOGA canisters by Rebecca Hornbrook '->' / Upper box concentrations (bg) is from Julia's revious runs REAC GO3 6.73E+11 0.90E+12 /O3 35 ppbv; bg ~50 ppbv REAC GNO2 2.88E+10 3.80E+09 /NO2 1.5 ppbv; bg 2.1 ppbv REAC GNO 1.92E+08 0.00E+09 /used 0.01ppb 1.92E+09 /NO bg 0.04 ppb REAC GCO 2.00E+12 1.95E+12 /CO 105ppb ; 105ppb REAC GHNO2 3.52E+08 1.00E+07 /*HONO 1% of total NOx => 0.036 ppbv REAC GCH4 3.19E+13 3.20E+13 /*based on WRF/Chem concentrations of 1.66 ppmv REAC GCH2O 3.84E+10 1.00E+08 /*formaldehyde CH2O => HCHO 2 ppbv from rocs-2010 REAC GCH3OH 4.88E+10 1.00E+10 /methanol CH3OH 2.5 ppbv REAC GC02000 2.36E+10 0.00E+10 /->ethane CH3CH3 1.23 ppbv REAC GU02000 2.70E+09 0.00E+09 /->ethene CdH2=CdH2 0.14 ppbv REAC GC2H2 2.60E+09 0.00E+09 /->ethyne #ethyne 0.11 ppbv REAC GD02000 2.30E+10 0.00E+10 /acetaldehyde CH3CHO 0.85 ppbv ; TOGA 1.2 ppbv REAC GC03000 1.77E+10 0.00E+09 /->propane CH3CH2CH3 0.92 ppbv REAC GU03000 1.10E+09 0.00E+09 /->propene CH3CdH=CdH2 0.057 ppbv REAC GK03000 3.22E+10 0.00E+10 /acetone CH3COCH3 measured with propnal and total is 2.31 ppbv - split in 2/3 REAC GD03000 1.22E+10 0.00E+10 /propanal CH3CH2CHO 2 ppbv -split in 1/3 with acetone REAC GC04000 2.50E+09 0.00E+09 /->n-butane CH3CH2CH2CH3 0.13 ppbv REAC GC04001 1.42E+09 0.00E+09 /->i-butane CH3CH(CH3)CH3 0.074 ppbv REAC GU04000 1.70E+09 0.00E+09 /->1-butene CH3CH2CdH=CdH2 0.088 ppbv REAC GU04002 3.27E+08 0.00E+08 /->i-butene CH3Cd(CH3)=CdH2 0.017 ppbv REAC GUK4001 2.40E+09 0.00E+09 /*MVK CH3C(O)CdH=CdH2 0.125 ppbv bc of 0.3ppb REAC GK04000 2.60E+09 0.00E+09 /methyl ethyl ketone CH3CH2COCH3 0.135 ppbv REAC GC05000 1.35E+09 0.00E+09 /->n-pentane CH3CH2CH2CH2CH3 0.07 ppbv REAC GC05001 1.92E+09 0.00E+09 /->i-pentane CH3CH2CH(CH3)CH3 0.1 ppbv REAC GUU5000 6.70E+08 0.00E+09 /*isoprene CdH2=CdHCd(CH3)=CdH2 - set to 10% of 232-MBO according to T. Karl REAC GT05000 3.00E+08 0.00E+00 /->cyclopentane C1H2CH2CH2CH2C1H2 0.011 ppbv /REAC GU05002 4.16E+09 0.00E+00 /2-methyl-2-butene CH3CdH=Cd(CH3)CH3 REAC GU05000 1.15E+08 0.00E+00 /->1-pentene CH3CH2CH2CdH=CdH2 CH3CH2CdH=CdHCH3 0.006 ppbv REAC GT06000 1.54E+08 0.00E+08 /->cyclohexane C1H2CH2CH2CH2CH2C1H2 0.008 ppbv REAC GC06003 4.00E+08 0.00E+08 /2,2-dimethylbutane CH3CH2C(CH3)(CH3)CH3 0.019 ppbv REAC GC06004 2.11E+08 0.00E+08 /2,3-dimethylbutane CH3CH(CH3)CH(CH3)CH3 0.011 ppbv REAC GC06002 2.00E+08 0.00E+08 /3-methylpentane CH3CH2CH(CH3)CH2CH3 0.018 ppbv REAC GAR0002 0.43E+09 0.00E+08 /benzene #mmc1HcHcHcHcHc1H -> 0.022ppbv ; 0.03ppb REAC GC07000 1.00E+08 0.00E+08 /n-heptane CH3CH2CH2CH2CH2CH2CH3 0.010 ppbv /REAC GC07001 3.76E+09 0.00E+00 /2,4-dimethylpentane CH3CH(CH3)CH2CH(CH3)CH3 REAC GAR0084 1.7E+09 0.00E+08 /toluene #mmc1HcHcHcHcHc1CH3 -> 0.09ppbv ; 0.040ppb /REAC GC08000 2.93E+09 0.00E+00 /n-octane CH3CH2CH2CH2CH2CH2CH2CH3 /REAC GC08001 1.36E+10 0.00E+00 /2,2,4-trimethylpentane CH3CH(CH3)(CH3)CH2CH(CH3)CH3 /REAC GC08002 5.43E+09 0.00E+00 /2,3,4-trimethylpentane CH3CH(CH3)CH(CH3)CH(CH3)CH3 /REAC GC06001 0.00E+00 0.00E+00 /2-methylpentane : CH3CH(CH3)CH2CH2CH3 same as "4-methylpentane": C06001 CH3CH2CH2CH(CH3)CH3 REAC GAR0403 1.35E+08 0.00E+08 /->ethylbenzene #mmc1HcHcHcHcHc1CH2CH3 - measured with m,p-xylene as 0.021 ppbv and split in 3 REAC GAR0245 1.35E+08 0.00E+08 /->m-xylene #mmc1Hc(CH3)cHcHcHc1CH3 REAC GAR0167 6.70E+07 0.00E+07 /->o-xylene #mmCH3c1cHcHcHcHc1CH3 - 0.0035 ppbv REAC GAR0332 1.35E+08 0.00E+08 /->p-xylene #mmc1HcHc(CH3)cHcHc1CH3 /REAC GC09000 1.94E+09 0.00E+00 /n-nonane CH3CH2CH2CH2CH2CH2CH2CH2CH3 REAC GAR0666 9.80E+07 0.00E+00 /->1,2,4-trimethylbenzene #mmCH3c1HcHcHc(CH3)cHc1CH3 0.0051 ppbv REAC GAR0745 7.70E+07 0.00E+00 /->1,3,5-trimethylbenzene #mmc1Hc(CH3)cHc(CH3)cHc1CH3 0.0040 ppbv /REAC GAR0790 9.88E+08 0.00E+08 /2-ethyltoluene #mmCH3c1cHcHcHcHc1CH2CH3 /REAC GAR0860 2.24E+09 0.00E+08 /3-ethyltoluene #mmc1Hc(CH3)cHcHcHc1CH2CH3 /REAC GAR0916 1.29E+09 0.00E+08 /4-ethyltoluene #mmc1HcHc(CH3)cHcHc1CH2CH3 /REAC GC00000 2.93E+09 0.00E+08 /n-decane CH3CH2CH2CH2CH2CH2CH2CH2CH2CH3 / / biogenic species : monoterp = 0.62 ppbv ; sesqterp = 0.008 ppbv / a-pin : 23% ; b-pin : 25% ; carene = 24% ; limon =12% REAC GUO5000 3.80E+09 0.00E+10 /232 MBO CH3C(OH)(CH3)CdH=CdH2 0.20 ppbv ; 1.0 ppb REAC GTT0000 2.30E+09 0.00E+09 /a-pinene C12HCH2CH(C1(CH3)CH3)CH2CdH=Cd2CH3 used 0.62 ppbv * 20% -> 0.12 ppbv ; 0.05 ppb REAC GTT00F9 3.46E+09 0.00E+09 /b-pinene CH3C1(CH3)CH(CH2C12H)CH2CH2Cd2=CdH2 used 0.18 ppbv ;0.1ppb REAC GTU000t 0.50E+09 0.00E+09 / limonene C1H2CH2Cd(CH3)=CdHCH2C1HCd(CH3)=CdH2 in the dict ; in the cheminput.dat CH3Cd1=CdHCH2CH(Cd(CH3)=CdH2)CH2C1H2 -> 0.09 ppbv REAC GTT00IH 1.92E+08 0.00E+09 / carene CH3C1(CH3)C2HCH2CdH=Cd(CH3)CH2C12H in the dict ; in cheminput.dat CH3Cd1=CdHCH2CH(C2(CH3)CH3)C2HC1H2 / / solar parameters for photolysis / lat. long. 'time zone' year month day / Time zone est le decalage horaire par rapport au / temps universel au meridien de Greenwich. / Example : 'Mexico City, March 2006' / includes 1 hour offset for daylight savings time (corrected) / if assumed that we at Greenwich 0.0 0.0 then use local time to write the emissions and input quantitites / if assumed that we are at the actual location, then use the UTC time to write the emissions PPHO 39.100 0.0 0.0 2011 8 10 / multiplication factor for phot rates (= meas/TUV-calculated) JFAC 3 000000 1.0 313200 1.0 396000 1.0 END