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Introduction
Absorption spectroscopy

Measurements in solar or lunar
absorption and emission
possible

Received spectrum given by
the sum of all absorption along
the path of sight.
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Introduction
Principle of a Fourier transform spectrometer

I apertures define and
restrict field of view

I aperture influences
resolution

I filter restricts
wavelength
sensitivity
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Overview of sfit4 package

I sfit development started in
the early 90ies

I aim: fast and small code to
be less dependent on large
computers

I first version of sfit2 ready
in 1998

I SFIT4 started in 2010, first
official version in 2014

I cooperation of many
groups operating FTIR:
NCAR Boulder, U Toronto,
BIRA Brussels and
U Bremen
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Overview of SFIT4
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A priori

I FORWARD MODEL F :

y − spectrum
xg − atmospheric state
xb − auxiliary parameters
ε − noise on spectrum
y = F (xg , xb) + ε

I RETRIEVAL: recipe to modify xg
and xb
I METHODS:

- optimal estimation
- Tikhonov-Phillips-
regularization

I CAVEAT: A PRIORI information
necessary due to lack of
information in spectrum
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Radiative transfer model

y − spectrum
xg − atmospheric state xb − auxiliary parameters
y = F ( x︸︷︷︸

=(xg ,xb)

) + ε

I for atmosphere:
I line-by-line model using the Voigt line shape
I raytracing described by LBLATM
I solar line parameters by Frank Hase
I spectroscopic data from data bases, e.g. HITRAN

I for instruments:
I line-shape effects: apodization function, phase shift,

field-of-view
I frequency shift of instrument
I zero offsets due to non-linearity of detector
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Radiative transfer model

y − spectrum
xg − atmospheric state xb − auxiliary parameters
y = F ( x︸︷︷︸

=(xg ,xb)

) + ε

statevector x contains everything which could(!) be retrieved

x = (xVMR gas 1
z=1,...,n, x

VMR gas 2
z=1,...,n, . . . ,︸ ︷︷ ︸

xg ,atmosphere

, νF-AXIS SHIFT, νSOLAR SHIFT, . . .︸ ︷︷ ︸
xb,aux. parameters

)

xg is normalized or logarithmic for numerical reasons, i.e.

xg = xAtmosphere/xA or xg = log(xAtmosphere)
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Radiative transfer model
Atmospheric model

Radiance calculated by

I = B(∞) exp(−τ(0,∞)) +

∫ ∞
0

α(z ′)B(z ′)︸ ︷︷ ︸
Emission of layer z

exp(−τ(0, z ′))dz ′

τ(0, z) =

∫ z

0
α(z ′)dz ′ α(z) =

N∑
l=1

xa,l(z)αl(z)

a(z)B(Z)

a(z)B(Z)

a(z)B(Z)

a(z)B(Z)

a(z)B(Z)

a(z)B(Z)
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t(
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,z
4

)
t(

0
,z

3
)

top of atmosphere

Instrument

modeled spectrum

B(z) Planck function
Emission by Kirchhoff’s law

e(ν) = α(ν,P,T )B(ν,T )

Transmission ∈ [0,1]

T (0, z) = exp(−τ(0, z))
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Radiative transfer model
The absorption cross section

I The frequency dependent absorption cross section can be
written as

α(ν) = S(ν0,T )L(ν0, ν,n,P,T ) (1)

with S the transition intensity or source strength and L the
line shape normalized to 1.

I S is the intensity of the line observed
I L contains the effects of the environment upon the

observed molecule.
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Radiative transfer model
The absorption cross section – The intensity S

I Intensity for transistion from state i to state j , Sij is a
quantity dependent on the transition and temperature

Sij = C
µ2

ij

TQ(T )

(
e−

Ej
kBT − e−

Ei
kBT

)
I HITRAN contains intensity at 296K, the energy of the lower

and the higher state
I partition function Q(t) calculated using TIPS method (part

of HITRAN).
I extrapolation of intensity to arbitrary temperatures

S(T ) = S(T0)
T0Q(T0)

TQ(T )
exp

[
Ei + Ej

2KBT0

(
1− T0

T

)]
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Radiative transfer model
The absorption cross section – the line shape L

Active molecules: Molecules causing emission or absorption
Perturbers: or buffering gas or bath, molecules not absorbing

Translational effects
I caused by the (thermal)

movement of the
molecules

I Velocity distribution is
Maxwell Boltzmann if not
disturbed

I Line shape described by a
Gauss function LG

Collisional effects
I Caused by interactions of

molecules
I Dephasing of radiation ->

limiting correlation
between different times

I line shape described by a
Lorentz function LL

Voigt function LV (ν) = LG ? LL
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Radiative transfer model
The absorption cross section – the line shape L

I Line width of Lorentz
function increases
proportional to pressure.
Consequence of
uncertainty relation

∆E∆t ≤ ~

I Width of Gaussian part is
roughly constant in altitude
but proportional to
frequency

NOTE: Altitude information is
only available as long as the
Lorentz part dominates
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the higher the frequency, the lower the
maximum altitude for profile information



Radiative transfer model
Calculation of the K matrix

For the retrieval and sensitivity study we need the first
derivative, the so-called Jacobian of the forward model, also
called the weighting function matrix K
Remember: x = (xg , xb)

y = F (x)

Kg,b :=
∂F
∂xg,b

∣∣∣∣
x0

g,b

Using the K matrix, the forward model can be linearized:

F (x) = F (x0) + K (x0)(x − x0) + O
(

(x − x0)2
)

using ỹ = y − y0

x̃ = x − x0

 ỹ = K x̃
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Radiative transfer model
Calculation of the K matrix

Two approaches:
1. Perturbation: for each row of the K matrix:

Ki =
F (x + ∆x)− F (x)

∆x

-> order N2

2. Semi analytic K-matrix calculation, exploits the fact that the
transmission in of a layer only changes if the VMR
underneath this layer changes. The spectrum and the
K-matrix are calculated in two runs from TOA to the ground
 order N
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Inversion of the RTM (RETRIEVAL)

Inversion of RTM F is an ill-posed problem
I In the presence of noise, information content of spectra in

nadir/zenith geometry is limited, not more than a few bit
I influence of noise grows exponentially
I but: for numerical reasons, atmospheric bins should be

small
 number of layers higher than information content
 regularization is needed

In SFIT4 two methods are implemented
I Optimal estimation (in the version of Rodgers, 2000)
I Tikhonov-Phillips-Regularization (various authors)
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Inversion of the RTM (RETRIEVAL)
Inversion using Bayes theorem

p(y|x) - conditional probability distribution

p(x |y)p(y) = p(y |x)p(x) Bayes theorem

 p(x |y) =
p(y |x)p(x)

p(y)

We choose all probabilities to be Gaussian
Why?
I product of two Gaussian functions is Gaussian
 p(x |y) is Gaussian

I mode = mean
 
∫

p(y) does not need to be known
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Inversion of the RTM (RETRIEVAL)
Inversion using Bayes theorem

p(y |x) = CL exp(−(y − F (x))T S−1
ε (y − F (x)))

p(x) = CA exp(−(x − xA)T S−1
A (x − xA))

 p(x |y) = C exp(−(x − x̂)T S−1(x − x̂))

getting the mode (=mean) by finding the extrema of the
argument:

x̂ = arg min((y − F (x))T S−1
ε (y − F (x)) + (x − xA)T S−1

A (x − xA)︸ ︷︷ ︸
cost function

)

x̂ = xA + (S−1
A + K T S−1

ε K )−1[K T S−1
ε (y − KxA)]

S−1 = K T S−1
ε K + S−1

A

Mathias Palm 17/ 22



Inversion of the RTM (RETRIEVAL)

Inversion using Tikhonov-Phillips-Regularization by minimizing:

x̂ = arg min(||P(y − F (x))||︸ ︷︷ ︸
data misfit

+λ ||R(x − xA)||︸ ︷︷ ︸
Regularization

)

λ – regularization strength

Solution by

x̂ = xA + (R−2 + K T P−2K )−1[K T P−2(y − KxA)]

 equivalent to optimal estimation with R2 = SA and P
2

= Sε
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Inversion of the RTM
non-linear forward models

Two iteration methods implemented:
1. Gauss-Newton iteration

I weakly non-linear models
I iteration only successful if started near the solution

xi+1 = xA+(S−1
A +K T

i S−1
ε Ki)

−1K T
i S−1

ε (y−F (xi))+Ki(xi−xA)

2. Levenberg-Marquardt iteration
I moderatly non-linear models
I compromise of Gauss-Newton (quick but unstable) and

steepest descend iteration (slow but stable)

xi+1 = xA+((1+γ)S−1
A +K T

i S−1
ε Ki)

−1K T
i S−1

ε [(y−F (xi))+Ki(xi−xA)]

γ is the weighting between Gauss-Newton and steepest
descent. γ decreases when iteration successful (cost
function gets lower), else is increased
 γ start with a high value and is continually decreased
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Retrieval analysis
The averaging kernel matrix

One of the most important quantities beside the result is the
sensitivity of the retrieval, or the avarging kernels A:

A :=
∂x̂
∂x

=
∂x̂
∂F

∂F
∂x

comparing with and identifying y = Kx :

x̂ = xA + (S−1
A + K T S−1

ε K )−1K T S−1
ε (y − KxA)

x̂ = xA + (S−1
A + K T S−1

ε K )−1K T S−1
ε︸ ︷︷ ︸

=D

K (x − xA)

we find a linarisation of the retrieval using A = DK :

x̂ = xA + A(x − xA) = (I − A)xA + Ax
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Retrieval analysis

I Can the measured spectrum be modeled?
I Is the result sensible?
I Correlation of retrieved quantities
I Error/Sensitivity of retrieved quantities
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Retrieval analysis

I Can the measured spectrum be modeled?
I Is the result sensible?
I Correlation of retrieved quantities
I Error/Sensitivity of retrieved quantities
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Retrieval analysis
I Can the measured spectrum be modeled?
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I the correlation of different
entries of the state vector
is given by the AVK matrix
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Retrieval analysis

I Can the measured spectrum be modeled?
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Retrieval analysis
I Can the measured spectrum be modeled?
I Is the result sensible?
I Correlation of retrieved quantities
I Error/Sensitivity of retrieved quantities

Change of Ozone VMR in %
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I Ozone measurements
using a millimeterwave
instrument

I Measurements
independent of weather
and light

I Altitude range about 20 -
60 km altitude

What would the instrument see, if the model would be true?
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Retrieval analysis
I Can the measured spectrum be modeled?
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Retrieval analysis

I Can the measured spectrum be modeled?
I Is the result sensible?
I Correlation of retrieved quantities
I Error/Sensitivity of retrieved quantities

x̂ − x = (A− I)(x − xA) Smoothing error
+Gyε Retrieval noise
+Gy ∆F (x ,b, b̂) Forward model error
+GyKb(b − b̂) model parameter error

compare Rodgers (2000)

Mathias Palm 21/ 22



Error calculation

x̂ − x = (A− I)(x − xA) Smoothing error
+Gyε Retrieval noise
+Gy ∆F (x ,b, b̂) Forward model error
+GyKb(b − b̂) model parameter error

smoothing error only accessible when covariance of real
ensemble is known.

retrieval noise caused by noise on spectrum.
Error due to use of wrong forward model. Difficult to assess if

true forward model is not known.
FW model parameter error Kb matrices are calculated in SFIT4

for b, can be used for sensitivity studies or error
calculation, if error of quantities b is known.
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