

Refine the Calibration of PROFFAST 2

TCCON-NDACC-COCCON Meeting in Spa

Benedikt Herkommer, Frank Hase, Carlos Alberti, Darko Dubravica, Lena Feld, Tomi Karppinen, Rigel Kivi

Why redo the calibration?

- Last calibration was released in January 2022 with (PROFFAST 2.2, or PROFFASTpylot 1.1)
 - Shows a residual offset for larger solar zenith angles (SZA)
 - Considered only COCCON reference and KA-TCCON data
- The new calibration is based on 3 EM27/SUNs and 2 TCCON sites:
 - SN37 (reference EM27/SUN) compared with TCCON-KA
 - SN39 compared with TCCON-SO (2017 2018)
 - SN122 compared with TCCON-SO (2020 mid 2021)

Status of the old calibration

Δ Xgas: SN37(COCCON reference) vs. TCCON-KA

How to Calibrate?

<u>Determine</u>

Air mass Dependent Correction Factors (ADCFs)

&

Air mass Independent Correction Factors (AICFs)

4

How to Calibrate?

1) Improve ADCFs (Independent of TCCON)

- 1. For each day: Calculate the mean of all measurements with $20 \le SZA \le 50$
- 2. Divide the measurements of each day by this average
- 3. Fit $f(SZA) = 1 + a \cdot sza^2$ to the data
- 4. Estimate ADCFs in order to minimize "a"
- 5. Reprocess with new ADCFs and repeat with step 1

3) Improve AICFs (Calibration to match with TCCON):

- 1. Bin the measurements of TCCON and COCCON in 10 minute bins
- **2.** Divide the bins by each other and average the resulting quotients:
 - $c = \frac{1}{N} \sum_{i} q_i$
- **3**. AICF_{new} = $c \cdot \text{AICF}_{\text{old}}$

4. Reprocess with new ADCFs and repeat with step 1.

Status of the old calibration

How to Calibrate?

1) Improve ADCFs (Independent of TCCON)

- 1. For each day: Calculate the mean of all measurements with $20 \le SZA \le 50$
- 2. Divide the measurements of each day by this average
- 3. Fit $f(SZA) = 1 + a \cdot sza^2$ to the data
- 4. Estimate ADCFs in order to minimize "a"
- 5. Reprocess with new ADCFs and repeat with step 1
- 2) Introduce a third, empirical correction factor:

Correct all species with a linear correction in dependence of XH2O

3) Improve AICFs (Calibration to match with TCCON):

- 1. Bin the measurements of TCCON and COCCON in 10 minute bins
- **2. Divide** the **bins** by each other and average the resulting quotients:

$$c = \frac{1}{N} \sum_{i} q_i$$

7

3. AICF_{new} = $c \cdot \text{AICF}_{\text{old}}$

4. Reprocess with new ADCFs and repeat with step 1.

1) New Calibration: Determine ADCF

Meteorology and Climate Research

2) New empirical Correction Factor

AXCO₂ (ppm) C 2.5. 0.0 -2.5 70 30 40 50 60 80 Solar Zenith Angle (°) $\begin{array}{c} 2.5\\ VCO_{2} \text{ (bbm)}\\ -2.5 \end{array}$ ď 30 20 0 10 ground Temperature (°C) AXCO₂ (ppm) ρ 2.50.0 -2.51000 2000 3000 4000 5000 6000

XH₂O (ppm)

Why choose XH₂O as the variable for the correction?

06/13/23

Institute of Meteorology and Climate Research

9

2) New empirical Correction Factor

2) + 3) XH2O correction + AICF

Assessment of Calibration

The table shows the relative deviations and the relative standard deviation in %

Species	Average of (SN37, SN39, SN122) (%)
XCO_2	0.02840 ± 0.11337
XCH_4	-0.01310 ± 0.19023
XCH_4^{S5P}	-0.03920 ± 0.26753
XCO	-0.27420 ± 1.60327
XH_2O	-1.20523 ± 1.88773
XAIR	0.00020 ± 0.25413

Conclusion

- 1. The **new calibration** is based on several COCCON and TCCON spectrometers and results in an **excellent adjustment** of **COCCON with PROFFAST2** and **TCCON with GGG2020**.
- 2. In the **future**: **confirm** the calibration using an **additional** souther hemisphere **TCCON site** (Wollongong?)
- 3. It is surprisingly that the C_{XH_2O} are this consistent across different species.
- 4. But: are we confident that GGG2020 is correct in this respect?
 - \rightarrow We are in discussion with the TCCON board!

Thank you for your attention!

Comparison GGG2020 vs GGG2014

Comparison PRF1 and PRF2 vs GGG2020

Climate Research

Karlsruhe Institute of Technology

Comparison PRF 2 with PRF 1 H_2O line list

Final Calibration Factors

06/13/23

XGas	ADCF ₁	ADCF ₂	ADCF ₃	AICF	CF _{XH₂O}
XH ₂ O	0.00000	0.0000	0.0000	1.0000	
XAIR	-0.0075	-0.0072	0.0000	0.9910	0.00
XCO_2	0.00040	0.0020	0.0000	0.9975	-1.50
XCH_4	0.00275	0.0100	0.0000	0.9884	-0.72
$\mathrm{XCH}_4^{\mathrm{S5P}}$	-0.0008	0.0025	0.0000	0.9950	-0.72
XCO	0.07150	0.0060	0.0000	1.0000	-0.30

Assessment of Calibration

06/13/23

The table shows the relative deviations and the relative standard deviation in %

Species	SN37 (%)	SN39 (%)	SN122 (%)	Average of (SN37, SN39, SN122) (%)
XCO_2	-0.0429 ± 0.0949	0.0464 ± 0.0861	0.0817 ± 0.1591	0.02840 ± 0.11337
XCH_4	0.0006 ± 0.1596	0.0184 ± 0.1536	-0.0583 ± 0.2575	-0.01310 ± 0.19023
$\rm XCH_4^{S5P}$	0.0342 ± 0.2403	0.0110 ± 0.2252	-0.1628 ± 0.3371	-0.03920 ± 0.26753
XCO	0.9157 ± 2.3268	-0.8551 ± 1.1736	-0.8832 ± 1.3094	-0.27420 ± 1.60327
XH_2O	-1.5683 ± 2.5825	-1.1757 ± 1.6904	-0.8717 ± 1.3903	-1.20523 ± 1.88773
XAIR	-0.1759 ± 0.1410	0.0823 ± 0.3581	0.0942 ± 0.2633	0.00020 ± 0.25413

How to calculate the deviations in percent

1) Calculate the difference of 10 minute bins: $\Delta XGas_i = \overline{XGas}_i^{TC} - \overline{XGas}_i^{CC}$

2) Calculate the average of the differences: $\overline{\Delta XGas} = \frac{1}{N} \sum_{i=1}^{N} \Delta XGas_i$

3) Calculate the standard deviation of the differences.

4) Calculate the timely average Xgas value of the TCCON-Site over the whole comparison period.

5) Calculate the relative difference and standard deviation:

$$\widehat{\Delta XGas} \pm \widehat{\sigma_{\Delta XGas}} = \frac{\overline{\Delta XGas}}{\overline{XGas_{TCCON}}} \pm \frac{\sigma_{\Delta XGas}}{\overline{XGas_{TCCON}}}$$