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Abstract. We present a multi-year time series of column abundances of carbon monoxide (CO), hydrogen cyanide (HCN),

and ethane (C2H6) measured using Fourier transform infrared (FTIR) spectrometers at ten sites affiliated with the Network

for Detection of Atmospheric Composition Change (NDACC). Six are high-latitude sites: Eureka, Ny-Ålesund, Thule, Kiruna,

Poker Flat, and St. Petersburg , and four are mid-latitude sites: Zugspitze, Jungfraujoch, Toronto, and Rikubetsu. For each site,

the inter-annual trends and seasonal variabilities of the CO time series are accounted for, allowing ambient concentrations to be5

determined. Enhancements above ambient levels were used to identify possible wildfire pollution events. Since the abundance

of each trace gas emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of

CO to the long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution, while

complementary measurements of aerosol optical depth from nearby AERONET sites confirm the presence of wildfire smoke.

A GEOS-Chem tagged CO simulation with Global Fire Assimilation System (GFAS) biomass burning emissions was used10

to determine the source attribution of CO concentrations at each site from 2003-2018. The influence of the various wildfire

sources is found to differ between sites while North American and Asian boreal wildfires fires were found to be the greatest

contributors to episodic CO enhancements in the summertime at all sites.
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1 Introduction

The Arctic is a major receptor for pollution from mid-latitude regions (Stohl et al., 2006; Law and Stohl, 2007; Shindell et al.,15

2008). Boreal wildfires are well known to have considerable impacts on the Arctic atmosphere and climate (Amiro et al., 2009;

Warneke et al., 2009). Black carbon, also known as soot, is a strong contributor to global warming (Bond and Sun, 2005 and

references therein). Black carbon in the Arctic has been studied extensively and it has been found that a substantial fraction

of Arctic black carbon is transported from boreal wildfires (Stohl et al., 2006; Sharma et al., 2004, 2006; Wang et al., 2011;

Sharma et al., 2013; Evangeliou et al., 2016; Winiger et al., 2019). Black carbon is well known to contribute to episodes20

of poor air quality and warm the atmosphere by absorbing radiation and covering snow- and ice-covered surfaces, indirectly

exerting snow-albedo effects (McConnell et al., 2007; Ramanathan and Carmichael, 2008; Flanner, 2013). Boreal wildfires

may also influence the carbon cycle (Conard and Ivanova, 1997; Schimel and Baker, 2002; Mack et al., 2011; Santín et al.,

2015). In boreal wildfire events, considerable quantities of carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4)

are emitted (van der Werf et al., 2017). Boreal wildfire emissions of CO, CO2 and CH4 are dependent on burning phase, with25

greater emissions of CO2 and CH4 from flaming combustion, with CO emissions dominated by smoldering and residual phase

combustion (Andreae and Merlet, 2001 and the references therein). Emissions of CO, CH4, nitrogen oxides (NOX) and volatile

organic compounds (VOCs) from wildfires may then be oxidized to form CO2 and ozone (O3) (Levine, 2003).

Wildfires also contribute to the emission of a large number of reactive trace gas species, including VOCs, which promote

the production of tropospheric O3 and the formation of aerosols (Jaffe et al., 1999, 2004; Parrington et al., 2013; Wentworth30

et al., 2018) and therefore negatively impact air quality. Emissions of these species remain highly uncertain as a result of

the dependence of emissions on fuel types (Andreae and Merlet, 2001; Akagi et al., 2011; Andreae, 2019); emissions from

a particular event are strongly influenced by local meteorology, which has a direct influence on the burning phase and the

emission of each species (Yokelson et al., 1996, 1999, 2003; Goode et al., 1999, 2000). Additionally, these reactive species are

short-lived and are not easily measured downwind of the fire source. Wildfire plumes may be subject to long-range transport,35

and therefore it is necessary to measure the concentrations of these reactive trace gas species downwind in order to predict their

influence on a global scale.

In the Northern hemisphere, boreal wildfires are a dominant source of biomass burning, brought on by persistent warm and

dry conditions resulting in increased fire risk and ignition from lightning. Both periods of greater fire risk and lighting activity

are expected to occur with increasing frequency at Northern high-latitudes as a result of anthropogenic-induced climate change40

(Krause et al., 2014; Veraverbeke et al., 2017). The magnitude and intensity of boreal wildfire activity are also projected to

increase with future climate change (Amiro et al., 2009; Westerling et al., 2006; Flannigan et al., 2009; Wotton et al., 2010;

Boulanger et al., 2014).

Quantifying the influence of biomass burning on the Arctic atmosphere requires long-term, dedicated measurements of the

transported emissions in the Arctic. The Arctic is a difficult region to study as a result of the lack of dedicated measurement45

stations. Ground-based solar-absorption Fourier-transform infrared (FTIR) spectrometers have proven to be a useful tool for

quantifying trace species abundances. The Network for the Detection of Atmospheric Composition Change (NDACC; www.
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ndacc.org; De Mazière et al., 2018) provides a global network of FTIR instruments that routinely measure the biomass burning

tracers CO, hydrogen cyanide (HCN) and ethane (C2H6), in addition to a multitude of other trace gas species. The FTIR

instruments of NDACC have previously been utilized to study biomass burning emissions. Zhao et al. (1997, 2000, 2002)50

identified Asian and Siberian biomass burning sources as major contribution to the measured concentrations of CO, HCN

and C2H6 from ground-based FTIR measurements in Rikubetsu, Japan. Paton-Walsh et al. (2004, 2005, 2010) used solar-

absorption FTIR measurements in Australia (Darwin (34◦S, 150◦E) and Wollongong (34◦S, 150◦E)) to quantify emissions

of various trace gas species from Australian wildfires. Vigouroux et al. (2012) examined the influence of biomass burning in

Southern Africa and Madagascar on FTIR measurements of HCN, C2H6, acetylene (C2H2), methanol (CH3OH) and formic55

acid (HCOOH) at Reunion Island (21◦S, 55◦E) located in the Indian Ocean.

More recently, FTIR measurements in the Arctic have proven to be particularly useful, providing observational coverage of

trace gas species where measurements from other platforms are scarce or non-existent. Viatte et al. (2013) identified enhance-

ments of CO, HCN and C2H6 in FTIR measurements at Eureka (80◦N, 86◦W), Canada that were attributed to the 2010 Russian

wildfires. A subsequent study by Viatte et al. (2014) demonstrated the utility of FTIR in measuring the biomass burning species60

C2H2, CH3OH, HCOOH and formaldehyde (H2CO) at Eureka. Analogous retrievals of these species were also performed

for measurements from a second high-Arctic site at Thule (77◦N, 69◦W), Greenland and emission ratios and emissions fac-

tors were derived for these species from FTIR measurements at both Thule and Eureka by Viatte et al. (2015). Measurements

of ammonia (NH3) by solar-absorption FTIR spectroscopy was first demonstrated by Paton-Walsh et al. (2004) and later by

Dammers et al. (2015). Lutsch et al. (2016) provided the first measurements of NH3 in the high-Arctic and determined emission65

ratios and emissions for the 2014 Northwest Territories wildfires of Canada. The contribution of 2017 Canadian wildfires to

NH3 in the Arctic was examined using FTIR measurements at Eureka and Thule by Lutsch et al. (2019). The results of these

studies highlight the ability of FTIR spectroscopy to measure a number of trace gas species, many of which are difficult to

assess using satellite-based or other platforms.

However, each of these studies have only considered individual events or events that occurred in a short time series. Mea-70

surements using FTIR have been routinely made since the mid-1980s (Zander et al., 2008) and the number of measurement

sites have increased since the inception of the Network for Detection of Stratospheric Change (NDSC; Kurylo, 1991) in 1991,

which has been formally known as NDACC since 2005 (De Mazière et al., 2018). Several global FTIR sites have been mea-

suring the biomass burning tracers CO, HCN and C2H6 over the last two decades. Yurganov (2004) identified enhanced CO

columns in 1998 detected using FTIR measurements at several Northern mid- to high-latitude NDACC FTIR sites from 1996-75

2002. The 1998 CO anomaly was attributed to Siberian wildfires. A similar study by Yurganov et al. (2005) examined the 2002

and 2003 CO anomalies from Siberian wildfires using satellite-based, in situ and FTIR measurements in the Northern hemi-

sphere. Currently, no study has explicitly examined the long-term and inter-annual variability of biomass burning species using

FTIR measurements. A recent study by Petetin et al. (2018) investigated the impact of biomass burning on CO concentrations

measured by the In-service Aircraft for a Global Observing System (IAGOS), which focused on airport clusters in Europe,80

North America, Asia, India and Southern Africa over the period 2002-2017. To our knowledge, no study of this kind has been

performed for the Arctic and high-latitude regions.
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In this paper, the influence of wildfires on atmospheric composition from 2003-2018 is examined using FTIR measurements

from three high-Arctic NDACC sites: Eureka, Canada; Ny-Ålesund, Norway and Thule, Greenland. Three Arctic sites are

also included: Kiruna, Sweden; Poker Flat, Alaska and St. Petersburg , Russia. Additional measurements are obtained at four85

mid-latitude sites: Zugspitze, Germany; Jungfraujoch, Switzerland; Toronto, Canada and Rikubetsu, Japan. Potential wildfire

pollution events are first identified in the CO time series at each site through the detection of anomalous enhancements of CO.

For the CO enhancements detected at each site, enhancement ratios of HCN and C2H6 with respect to CO are calculated. Since

CO, HCN and C2H6 are co-emitted from biomass burning sources, a strong linear correlation for the enhancement ratios of

HCN and C2H6 indicate wildfire pollution events. The detection of wildfire pollution at each site was further confirmed using90

total aerosol optical depth (AOD) measurements from adjacent AERONET (Aerosol Robotic Network) sites. A GEOS-Chem

tagged CO simulation from 2003-2018 was performed to identify the source attribution for the detected events at each FTIR

site in addition to quantifying the contribution to CO from various biomass burning source regions.

The structure of this paper is summarized as follows. Section 2 provides an overview of each site and presents the retrieved

products for CO, HCN and C2H6. Descriptions of the AERONET data and GEOS-Chem tagged CO simulation used in this95

study are also discussed in this section. The retrieved FTIR products for CO, HCN and C2H6 are presented and discussed in

Section 3.1. The method for the detection of biomass burning pollution events is described in Section 3.2 and source attribution

using the GEOS-Chem tagged CO simulation is shown in Section 3.3. The contribution of the GEOS-Chem CO tracers to

FTIR measurements are presented and discussed in Section 3.4 and a comparison of the GEOS-Chem CO time series to FTIR

measurements at all sites is shown in Section 3.5. The conclusions and summary of this study are highlighted in Section 4.100

2 Methods

2.1 FTIR Sites and Retrievals

The NDACC FTIR sites included in this study were selected to provide coverage of high- and mid-latitude regions and are

listed in Table 1. Due to the broad spectral range measured at high resolution, typically from 700-4400 cm−1 at 0.0035 cm−1

resolution, a multitude of trace gas species may be retrieved from solar-absorption FTIR measurements. Measurements of CO,105

HCN, and C2H6, all of which are standard products of the NDACC IRWG are the focus of this study. Retrievals of each species

were performed by processing of solar-absorption spectra using the SFIT4 (https://wiki.ucar.edu/display/sfit4/) or PROFITT9

(Hase et al., 2004, for Kiruna and Zugspitze) retrieval algorithm which use the optimal estimation method (Rodgers, 2000)

to obtain volume mixing ratio (VMR) profiles and integrated column abundances by iteratively adjusting VMR profiles to

minimize the difference between the measured and calculated spectra (Pougatchev et al., 1995; Rinsland et al., 1998). Further110

details of the retrievals for each FTIR site are given in the references listed in Table 1.
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2.1.1 High-Arctic Sites

The highest-latitude FTIR site of NDACC is Eureka, located on Ellesmere Island in the Canadian Archipelago. It has been

shown in previous studies that Eureka is regularly influenced by the transport of boreal wildfire emissions from North America

and Asia (Viatte et al., 2013, 2014, 2015; Lutsch et al., 2016, 2019). Located approximately 500 km from Eureka is the site115

Thule on the Northwest coast of Greenland, which provides complementary measurements to Eureka as wildfire pollution

events detected at Eureka are generally also observed in measurements at Thule (Viatte et al., 2015; Lutsch et al., 2019). Ny-

Ålesund in Spitsbergen, Norway is the second highest-latitude FTIR site of NDACC. Ny-Ålesund is isolated from the direct

influence of anthropogenic and wildfire emissions, but is affected by the long-range transport of pollution originating from

Northern hemisphere mid-latitudes. For the purposes of this study, Eureka, Ny-Ålesund and Thule will be referred to as the120

“clean" high-Arctic (>75◦N) sites because they are free of local pollution sources.

2.1.2 Arctic Sites

The Arctic sites are defined as those located between 60◦N and 75◦N, and include Poker Flat, Alaska; Kiruna, Sweden; and

St. Petersburg, Russia. Poker Flat is strongly influenced by the transport of anthropogenic pollution from Siberia and Asia

(Kasai et al., 2005b). Asian anthropogenic emissions have been found to be a predominant source of pollution in Alaska, with125

a greater influence in years with strong El Niño conditions (Fisher et al., 2010). Siberian wildfires are a substantial source of

summertime pollution in Alaska (Jaffe et al., 2004; Warneke et al., 2009) in addition to local wildfires within the boreal forests

of Alaska. It should be noted that for this reason, and the dependence of FTIR measurements on clear-sky conditions, smoke

plumes within Alaska may prevent measurements by FTIR. As a result, summertime measurements at Poker Flat can be sparse.

Kiruna is mainly influenced by anthropogenic emissions from mid-latitude Europe; however, aerosol smoke layers from130

injection of Canadian wildfire emissions into the lower stratosphere have been identified in the past at Kiruna (Fromm et al.,

2000). Similarly, the urban site of St. Petersburg would be most sensitive to local sources within Europe. Both Kiruna and St.

Petersburg may sample the long-range transport of boreal Asian plumes that could circle the Northern Hemisphere (Damoah

et al., 2004), although such plumes would be well aged and diluted. Through injection of wildfire emissions into the upper

troposphere and lower stratosphere, North American boreal wildfire plumes may be efficiently transported to Europe (Khaykin135

et al., 2018; Hu et al., 2019). Although the effects of the long-range transport of wildfire emissions on air quality are likely to

be minimal, they can have an influence on tropospheric composition of long-lived species.

2.1.3 Alpine Sites

Both Zugspitze and Jungfraujoch are considered clean Alpine sites, isolated from local pollution sources and therefore provide

measurements that are representative of background concentrations of central Europe (Franco et al., 2015). For the purpose of140

this study, as the result of the close proximity between the two sites (∼200 km), Zugspitze and Jungfraujoch are considered

to be complementary to one another. Differences in measured column amounts between the two sites as a result of long-range

transport are likely due to their altitude differences, 2964 m a.s.l. and 3580 m a.s.l. for Zugspitze and Jungfraujoch, respectively.

5

https://doi.org/10.5194/acp-2019-881
Preprint. Discussion started: 18 November 2019
c© Author(s) 2019. CC BY 4.0 License.



It has been previously shown that Zugspitze is weakly influenced by nearby pollution sources, while Jungfraujoch is considered

a remote site, mainly influenced by long-range transport (Henne et al., 2010). However, as a result of the high altitudes of these145

sites, the measured composition is largely driven by long-range transport in the mid to upper troposphere.

2.1.4 Mid-latitude Sites

Toronto, an urban site, is most sensitive to local pollution sources in southeast Canada and the United States (Whaley et al.,

2015) and periodically subject to wildfire pollution episodes as demonstrated by Griffin et al. (2013); Whaley et al. (2015).

Rikubetsu, located in Hokkaido, Japan, is free of considerable local anthropogenic pollution sources, with contributions of CO150

mainly due to transported Asian anthropogenic emissions (Zhao et al., 2000). In the summertime, Rikubetsu is influenced by

the transport of biomass burning pollution from within Asia (Li et al., 2000), while the region of Hokkaido is often affected by

pollution episodes from Siberian wildfires of boreal Asia (Jeong et al., 2008; Tanimoto et al., 2000; Yasunari et al., 2018).

2.2 GEOS-Chem

To interpret the influence of anthropogenic, chemical, and biomass burning sources on CO columns at each FTIR site, the155

GEOS-Chem chemical transport model is used (http://geos-chem.org/;Bey et al., 2001b) in a tagged simulation of CO at a

horizontal resolution of 2◦×2.5◦ with 47 vertical hybrid levels. GEOS-Chem version 12.1.1 (The International GEOS-Chem

User Community, 2018) was used and driven by global meteorological inputs from the MERRA-2 (Modern-Era Retrospective

Analysis for Research and Applications, Version 2; Gelaro et al., 2017) from the NASA Global Modeling and Assimilation

Office (GMAO). MERRA-2 is produced with the GMAO/GEOS-5 (Goddard Earth Observing System) Data Assimilation160

System Version 5.12.4. The GEOS-Chem simulation was initialized with a 1-year spin-up from 1 January 2002 to 1 January

2003. Chemical and transport operator time-steps of 1 hr and 10 min, respectively, were used.

Biomass burning emissions are from GFASv1.2 (Global Fire Assimilation System, Kaiser et al., 2012; Giuseppe et al.,

2018) which assimilates Moderate Resolution Imaging Spectroradiomter (MODIS) burned area and fire radiative power (FRP)

products to estimate emissions for open fires. GFASv1.2 emissions have a 0.1◦×0.1◦ horizontal resolution with 3-hourly165

temporal resolution. GFAS was chosen for the availability of emissions over the analysis period from 2003-2018. Global

anthropogenic emissions are provided from the EDGARv4.3.1 (Emission Database for Global Atmospheric Research, Crippa

et al., 2016) emissions inventory, overwritten by regional emission inventories in the Northern hemisphere as described in

Fisher et al. (2010). Biogenic emissions of precursor VOCs are from the Model of Emissions of Gases and Aerosols from

Nature (MEGANv2.1; Guenther et al., 2012) and biofuel emissions are taken from Yevich and Logan (2003).170

The main loss mechanism for CO is from photochemical oxidation by the hydroxyl radical (OH). The OH fields are pre-

scribed in the tagged CO simulation and were obtained from the TransCom experiment (Patra et al., 2011) which implements

semi-empirically calculated tropospheric OH concentrations from Spivakovsky et al. (2000) to reduce the high bias of OH

from the GEOS-Chem full-chemistry simulation (Shindell et al., 2006). Surface emissions in GEOS-Chem are released within

the boundary layer, and boundary layer mixing is implemented using the non-local mixing scheme of Holtslag and Boville175

(1993). Biomass emissions are released by uniformly distributing emissions from the surface to the mean altitude of maxi-
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mum injection based on the injection height information as described in Rémy et al. (2017) which includes an injection height

parameterization by Sofiev et al. (2012) and a plume rise model by Freitas et al. (2007).

GEOS-Chem version 12.1.1 tagged CO simulation includes the improved secondary CO production scheme of Fisher et al.

(2017), which assumes production rates of CO from CH4 and NMVOC oxidation from a GEOS-Chem full-chemistry simula-180

tion therefore reducing the mismatch between the CO-only simulation and the full-chemistry simulation. The anthropogenic

source regions are shown in Figure 1, while biomass burning source regions are implemented following the standard GFED

(Giglio et al., 2013) regions and are also shown in Figure 1.

2.3 AERONET

The Aerosol Robotic Network (AERONET; https://aeronet.gsfc.nasa.gov; Holben et al., 1998) is a federation of ground-based185

remote sensing aerosol networks established by NASA and PHOTONS (PHOtométrie pour le Traitement Opérationnel de

Normalisation Satellitaire; Univ. of Lille 1, CNES, and CNRS-INSU). AERONET consists of a network of CIMEL sun pho-

tometers which provides globally distributed observations of spectral aerosol optical depth (AOD). At each AERONET site,

observations are recorded every 15 minutes and are cloud screened. Inversion of aerosols products and cloud screening for

the AERONET Version 3 database are described in (Giles et al., 2019). AERONET sites selected for this study were based190

on the availability of data during the operational period of the FTIR instruments and proximity to the FTIR site. The selected

AERONET sites nearest to the NDACC FTIR sites are listed in Table 1.

3 Results & Discussion

3.1 Retrieved FTIR Products

3.1.1 Time Series195

The weekly-mean time series of CO, HCN and C2H6 tropospheric partial columns for each site are shown in Figures 2, 3

and 4 respectively. The tropospheric partial columns are the integrated column amounts from the surface to an altitude of

12.71 km at each site. In this study, all presented column amounts correspond to this partial column for CO, HCN and C2H6.

The weekly mean is taken over all years of measurements for the respective species at each site, while the shaded region

indicates a 1σ deviation from the mean. For all sites, the seasonal cycle of CO shows a maximum in winter and early spring200

(February-March), with decreasing total columns through the spring. The main sources of CO are the combustion of fossil

fuels and biomass burning, while oxidation of VOCs and CH4 are also a considerable source (Holloway et al., 2000). The

main sink of CO is due to reaction with OH, leading to a lifetime of approximately 1-2 months (Bey et al., 2001a). In winter

and spring months, decreased sunlit hours limits OH production by photolysis of ozone, therefore minimizing the loss of CO.

The seasonal cycle of OH largely drives the seasonal variations of CO. Transport of CO from mid-latitude to high-latitude205

regions also contributes to the seasonal cycle as the isentropic transport is greater in the winter and spring months (Klonecki,
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2003; Stohl et al., 2006). Furthermore, the stronger seasonal cycle of OH production also contributes to the greater seasonal

amplitudes at high latitudes as observed in Figure 2.

Enhanced tropospheric columns of CO are observed in the summertime, mainly in July-September at all sites as illustrated in

Figure 2 as a result of the hemispheric influence of boreal wildfires (Honrath, 2004). These enhancements are most pronounced210

at the clean high-Arctic sites of Eureka and Thule, which are strongly influenced by boreal fires in North America and Asia.

Similar enhancements are also observed at the other Arctic sites of Ny-Ålesund and Kiruna, but are not as pronounced, which

is partly due to the longer transport times to these sites. Ny-Ålesund also exhibits an increase in CO beginning in August as a

result of the accumulation of CO from Northern Hemisphere biomass burning sources. Poker Flat, located in the boreal forests

of Alaska is greatly influenced by boreal wildfire emissions in these regions; however, in many instances these events result215

in smokey conditions that prevent FTIR measurements. As a result detection of enhancements at Poker Flat are likely to be

underestimated due to the strong influence of wildfire smoke.

A slight increase in CO concentrations is observed at Zugspitze and Jungfraujoch as a result of the long-range transport of

boreal wildfire emissions. Emissions from these events are often lofted into the free troposphere where long-range transport is

favoured (Jaffe et al., 2004; Val Martin et al., 2006). However, the transport of emissions over continental scales results in the220

dilution of the smoke plume and therefore, the enhancements observed at Zugspitze and Jungfraujoch are not as pronounced

as for the other sites.

St. Petersburg and Toronto are urban sites that are strongly influenced by local anthropogenic sources, but enhanced columns

of CO are observed in July and August as a result of the boreal wildfire influence. Rikubetsu is strongly affected by anthro-

pogenic CO sources from Asia, resulting in the large variability of CO (Zhao et al., 1997, 2002). The greatest enhancements at225

Rikubetsu are observed in July and August, due to boreal Asian wildfires in Siberia.

HCN has a long atmospheric lifetime ranging from days to months, while its dominant source is due to biomass burning

emissions (Li et al., 2000, 2003, 2009). Plant and fungal emissions represent a minor source of HCN, while dry deposition

to the ocean and oxidation by OH are the main sinks (Cicerone and Zellner, 1983). As a result, HCN will accumulate in the

Northern hemisphere in the summer months due to the influence of wildfire and biogenic emissions. The seasonal cycle of230

HCN peaks in the summer months with low total columns in the winter and fall as illustrated in Figure 3. A sharp maximum is

observed in August at the high-Arctic sites (Eureka, Thule and Ny-Ålesund) due to activation of its biogenic sources and the

onset of wildfire emissions. A similar increase in the HCN total columns is observed at the high-latitude sites (Kiruna, Poker

Flat and St. Petersburg), although not as pronounced. For Toronto, enhanced total columns are also observed in August due to

wildfires, consistent with the CO time series. Rikubetsu shows the greatest concentrations of HCN in the spring in May, with235

a secondary peak in August. The springtime enhancements of HCN are due to the earlier onset of East and Southeast Asian

biomass burning, which occurs annually from March to May (Streets et al., 2003).

The seasonal cycle of C2H6 is similar to that of CO, as shown in Figure 4. The primary sources of C2H6 include natural gas

production, biofuel use and biomass burning (Rudolph, 1995; Logan et al., 1981; Xiao et al., 2008). The main loss of C2H6 is

due to reaction with OH, resulting in an average lifetime of approximately three months (Xiao et al., 2008). The summertime240

wildfire influence of C2H6 is less pronounced than for CO and HCN. Enhancements of C2H6 are particularly evident at Eureka
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and Thule, due to the generally clean background of these sites, while wildfire enhancements of C2H6 are not evident at the

other sites due to the influence of local sources in addition to dilution of the plume during long-range transport. Therefore,

C2H6 enhancements due to wildfire pollution are not generally apparent over background concentrations. Additionally, the

emissions of C2H6 are an order of magnitude lower than those of HCN for boreal forest, temperate forests and peatland245

burning sources (Andreae and Merlet, 2001; Akagi et al., 2011; Andreae, 2019).

3.1.2 Volume Mixing Ratio Profiles

The VMR profiles of CO, HCN and C2H6 for all sites are shown in Figures 5, 6 and 7. In all cases, the profiles of each species

are similar between sites and tend not to show drastic differences. It should be noted, that these profiles do not represent the true

atmospheric profile of the species due to limited vertical resolution of the measurement, which is inherent in remote sensing250

measurements of this kind. The retrieved profiles generally follow a similar shape to the a priori profile, where deviations from

the a priori are a result of the measurement. The information content of the retrieval will be discussed in the following section.

In general, the profiles of all species exhibit greatest variability in the troposphere due to the abundance of these species in

this region as these species are considered to be primarily tropospheric. The the tropospheric column of CO, HCN and C2H6

comprise, on average, greater than approximately 90% of the total column for CO, 95% for HCN, and 98% for C2H6.255

The VMR profiles of CO (Figure 5) exhibit the greatest values in the lower free troposphere (surface-6 km) at all sites, with

values ranging from approximately 120-170 ppbv, with greater concentrations at the polluted sites of Toronto, St. Petersburg

and Rikubestu. These sites also illustrate a peak CO concentration at the surface layer due to the influence of local or nearby

emissions. For Rikubetsu, a slight increase in concentration from the surface (∼170 ppbv) to 1 km (∼175 ppbv) with con-

centrations decreasing with altitude as a result of the transport of CO in the free troposphere from nearby Asian sources is260

observed. Decreasing concentrations and reduced variability of the retrieved profiles with altitude is observed at all sites as

transported CO is generally well mixed. Poker Flat shows greatest variability of the CO profiles due to the transport of Asian

pollution in the spring and wildfires in Eurasia and Alaska in the summer (Kasai et al., 2005b).

The VMR profiles of HCN (Figure 6) are variable amongst sites, with surface-layer concentrations ranging from ∼190-

310 pptv. For most sites, a peak in the concentration is observed between 6-10 km, with decreasing concentrations above.265

The HCN vertical profiles generally show increasing concentrations from the surface to the mid-troposphere and decreasing

concentrations above. The urban sites, St. Petersburg and Toronto show decreasing concentrations from the surface due to the

influence of local anthropogenic sources, mainly automobile use (Baum et al., 2007; Moussa et al., 2016). Accumulation of

HCN in the upper troposphere is the result of its long lifetime and limited dry deposition to the ocean (Singh, 2003). This is

most evident at Ny-Ålesund, which is isolated from local sources and illustrates an upper-troposphere peak between 7-9 km,270

with a concentration of approximately 330 pptv.

The VMR profiles of C2H6 (Figure 7) follow a similar vertical structure to that of CO as a result of their common sources.

For the urban sites, St. Petersburg and Toronto, the concentration is greatest at the surface layer, approximately 2 ppbv and

2.4 ppbv respectively, as a result of local sources. Rikubetsu shows a peak near 1.7 km of 1.6 ppbv, due to the transport of

emissions in the free troposphere from nearby Asian sources. For Arctic sites, Eureka, Ny-Ålesund, Kiruna and Poker Flat,275
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C2H6 profiles show a broad peak in the free troposphere, generally between 1-7 km, which is indicative of the long-range

transport of pollution.

3.1.3 Averaging Kernels

The averaging kernel characterizes the vertical information content of the retrievals as described in Rodgers (2000). We con-

sider the total column averaging kernel (a), rather than the averaging kernel matrix (A). We define the total column averaging280

kernel vector:

a = CTA, (1)

where C is the total column operator in units of molecules cm−2 and T denotes the transpose. The VMR averaging kernel

matrix A is in VMR/VMR units. The total column averaging kernel may be normalized:

âi = ai/Ci, (2)285

where i is the index of the ith level of the FTIR vertical retrieval grid. The normalized total column averaging kernel (â)

is unitless and represents the sensitivity to a change in partial column for the vertical level i. The normalized total column

averaging kernel may then be applied to the partial column profile to obtain the smoothed column, as will be discussed further

in Section 3.5. For this purpose, normalized total column averaging kernel values near unity throughout the troposphere are

desired, which would minimize biases due to differences in the vertical sensitivities when computing the ratios of columns of290

different species, as will be done in the following section.

The mean normalized total column averaging kernels, referred to as simply the total column averaging kernel hereinafter,

for CO, HCN and C2H6 are shown in Figure 8. For all sites, the total column averaging kernels of CO show a value near 1

throughout the troposphere, with a slight decrease to values below unity above 5 km. For HCN, the total column averaging

kernels increase from the surface, with maximum values in the upper troposphere. The total column averaging kernels of C2H6295

show similar structure to HCN, with maximum values in the mid to upper troposphere. For all sites, it can be concluded that

CO retrievals exhibit minimal sensitivity bias in the troposphere. For HCN and C2H6, the total column averaging kernel is

greatest in the upper troposphere.

For all species and sites, the total column averaging kernels are not highly variable in time. The variability of the total column

averaging kernel is mainly due the changes in the vertical distribution of the species. In particular, total column averaging kernel300

values generally increase with greater concentration of the species. There is some dependence on the solar zenith angle (SZA)

of the measurement which varies seasonally, as the SZA is related to the sampled slant path through the atmosphere. At high

SZAs, the longer slant path results in greater degrees of freedom for signal (DOFS), and hence greater averaging kernel values.

The a priori covariance matrix, which is site and species dependent, also influences the total column averaging kernel.
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3.2 Detection of Wildfire Pollution Events305

As was illustrated in Section 3.1.1 and Figure 2, a seasonal cycle of CO is observed, with the amplitude varying by site location.

Over a long time series, CO may be subject to inter-annual trends as a result of changing emissions of CO and its precursors.

Additionally, non-clear sky conditions and instrument downtime result in periodic gaps in measurements and non-uniform time

intervals between measurements. As a result of these factors it can be difficult to determine baseline or ambient concentrations

of CO and therefore to detect enhancements of CO in the FTIR time series. To mitigate these influences, we account for the310

seasonal cycle and inter-annual variability of the CO time series measured at each FTIR site following Thoning et al. (1989):

C(t) = a0 + a1t+ a2t
2 +

4∑

n=1

bn cos(2πnt) + cn sin(2πnt), (3)

where C is the column CO concentration as a function of time t. The coefficients an account for the inter-annual trends of CO,

while the fourth-order Fourier series with coefficients bn and cn captures the seasonal cycle of CO. The choice of order for

both the polynomial and Fourier components of the fits were limited to third and fourth order following past studies (Thoning315

et al., 1989; Zellweger et al., 2009).

Enhancements in CO are identified following Zellweger et al. (2009). First, the fitted function is subtracted from the data

to yield the residual. Assuming a normal distribution of baseline values around the fitted function, the negative residual is

mirrored into the positive direction. Enhanced CO measurements are defined as those greater than a specified threshold of the

mirrored residual above the fitted function. The threshold is defined as a multiple of the standard deviation σ of the mirrored320

negative residual as listed in Table 3. The threshold is 1σ for all sites, with the exception of Rikubetsu where a 2σ standard

deviation was used as a result of the greater variability CO due to nearby Asian sources. The selected values are listed in Table

3.

The detected CO enhancements at each site are then binned by date to define individual events. The time window selected

for binning is listed in Table 3 for each site and based on the measurement density at the respective site. Enhanced CO325

measurements separated in time by this duration are binned as separate events, while consecutive measurements within this time

window are defined as a single event. Binning events minimizes the influence of varying plume composition, and also separates

CO enhancements that may not be of wildfire origin. This is particularly important for the calculation of the enhancement ratio

which will be described below. Longer separation times are selected for sites that are likely to be continually influenced by

wildfire emissions. These values are summarized in Table 3. At this stage, no attribution of the detected CO enhancements to330

any source has been performed and these enhanced periods simply indicate possible pollution events.

To isolate potential wildfire pollution events, we exploit the fact that trace gas emissions from wildfires are specific to burning

phase and vegetation type (Ward and Hardy, 1991; Yokelson et al., 1999; Andreae and Merlet, 2001; Yokelson et al., 2009;

Akagi et al., 2011; Urbanski, 2013, 2014) and therefore it would be expected that emissions of CO, HCN and C2H6 originating

from a wildfire source would be correlated within a plume. Emissions at the fire source are characterized by the emission ratio335

(ER; Andreae and Merlet, 2001; Akagi et al., 2011) relative to CO, which quantifies the amount of a trace gas species emitted
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relative to the amount of CO emitted. Since FTIR observations of this kind are measuring the emissions downwind of the

source, the enhancement ratio (EnhR; Lefer et al., 1994) is considered:

EnhRX = slope
(

[X]
[CO]

)

∆t=1hr
(4)

where [X] is the column of the trace gas of interest, and [CO] is the column of CO. The enhancement ratio is related to the340

emission ratio with the influence of plume aging by chemical loss, deposition and dilution of the plume during transport. Life-

times of CO, HCN and C2H6 are generally longer than plume transport times which range from several days to approximately

two weeks (Damoah et al., 2004) and therefore these species do not undergo chemical considerable chemical loss. Furthermore,

we do not take into account the background concentrations which can cause uncertainty in interpreting the enhancement ratio

as the ambient conditions are likely to vary along the plume trajectory (Yokelson et al., 2013).345

To calculate the enhancement ratios from the FTIR measurements, the detected CO enhancements for each event were

paired with the nearest HCN and C2H6 measurement taken within 1 hr. A 1-hr time interval was chosen to maximize the

number of pairs since CO, HCN and C2H6 are measured using different spectral filters and hence the measurements do not

occur simultaneously. For events with paired measurements of HCN or C2H6 with CO that are fewer than 5, the event is

omitted. Setting a minimum number of pairs mitigates the potential of false detections as a result of spurious measurements.350

The unified least-squares fitting procedure of York et al. (2004) which accounts for errors in both the ordinal and abscissa

coordinates was used to determine a linear regression for the paired fire-affected measurements. The slope of the linear re-

gression is the enhancement ratio for the respective species defined in Equation 4. To identify enhancements due to wildfire

pollution events, we require that the correlation coefficient (r) be greater than or equal to 0.5 for both the enhancement ratios

HCN and C2H6, unless otherwise stated, as summarized in Table 3.355

HCN is retrieved from NDACC Filter 2 measurements, which is generally covered at least once per measurement sequence

of all filters. Similarly, C2H6 is retrieved through filter NDACC filter 3. All filters have a different response to the input solar

beam intensity and therefore, the measurement noise may vary between subsequent measurements of different filters. For this

reason, adequate signal may not be obtained through all filters in the case of partially cloudy or non-clear sky conditions. It

was found that for all sites, with the exception of Jungfraujoch, there are a greater number of CO measurements than HCN360

or C2H6. Because of this non-uniform distribution of measurements, the number of detected wildfire events is limited by the

number of paired measurements for HCN or C2H6 with CO. For this reason, for Ny-Ålesund, Poker Flat and Rikubetsu, the

enhancement ratio correlation criteria (shown in Table 3) were omitted, resulting in a lower confidence for the detected wildfire

pollution events. However, for detected events at these sites, the adjacent AERONET sites provide additional evidence for the

detection of wildfire emissions if the measured AOD is simultaneously enhanced with CO as shown in Figure 9. Furthermore,365

the GEOS-Chem tagged CO simulation provides further confidence in the detected wildfire pollution events as discussed in the

following section.
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3.3 Source Attribution

A GEOS-Chem tagged CO simulation was performed as described in Section 2.2 for the time period of 2003-2018, giving 6-

hourly instantaneous VMR profiles of the tracers listed in Table 2. The GEOS-Chem simulation provides a means of evaluating370

the source attribution for the detected wildfire pollution events in the FTIR time series. Source attribution is performed as

follows. First, the GEOS-Chem CO VMR profiles in the grid box containing the respective FTIR site were converted to partial

column profiles and linearly interpolated and regridded onto the FTIR vertical retrieval grid. This was necessary in order to

account for the differences in the surface levels of the model and the FTIR sites (Barret et al., 2003). For each of the detected

events, the period of fire-affected measurements is considered. For this fire-affected window, we define the first-order rate of375

change of the CO partial column contribution for each of the GEOS-Chem tagged biomass burning CO tracers:

d[CO]X

dt
=

[CO]X(ti)− [CO]X(ti−1)
ti− ti−1

, (5)

where [CO]X is the column (in molec cm−2) of the CO tracer X and ti is the time of the GEOS-Chem timestep. Within a

wildfire pollution event, it is expected that a rapid increase of the CO contribution would be observed, resulting in a positive

value d[CO]X/dt. Similarly, as the plume passes or dissipates, a negative value of d[CO]X/dt would be observed. Considering380

this, the so-called impulse is then defined:

IX =

tf∫

t0

∣∣∣∣
d[CO]X

dt′

∣∣∣∣dt′ (6)

where t0 and tf correspond to the start time and end times of the detected event. The absolute value is used since we do not

discriminate against positive of negative rates of change. Since the model output timesteps are discrete and constant, using the

definition of Equation 5, Equation 6 may be approximated as:385

IX =
N∑

i=1

|[CO]X(ti)− [CO]X(ti−1)| (7)

where N is the number of GEOS-Chem output timesteps for the detected FTIR event from t0 and tf . The result of Equation 7

can be easily interpreted. For a wildfire event, the concentration would rapidly increase as the plume approaches the FTIR site

and rapidly decreasing CO concentrations as the plume passes. In contrast, anthropogenic, chemical or biogenic sources of CO

are less likely to contribute to episodic enhancements, as these sources tend to vary on seasonal timescales and are more likely to390

contribute to background concentrations of CO rather than anomalous enhancements. However, the transport of anthropogenic

emissions in the winter and spring may result in episodic pollution events. Detection of anthropogenic pollution events was

mitigated by the use of the correlation criteria for the enhancement ratios of HCN and C2H6 as mentioned previously. For

Ny-Ålesund, Poker Flat and Rikubetsu where no correlation criteria was used, winter and spring anthropogenic events were

identified and removed based on a qualitative assessment of the GEOS-Chem and AERONET AOD time series.395
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The value of IX would be greatest for the GEOS-Chem tagged CO tracer contributing to the episodic enhancement detected

by the FTIR instrument, and for the reasons stated above, is likely to be of wildfire origin. The source of the detected FTIR

enhancement therefore corresponds to the GEOS-Chem tagged CO tracer for which IX from Equation 7 is a maximum. The

source attribution for the detected wildfire pollution events in the FTIR time series is illustrated in Figure 10.

The mean enhancement ratios of HCN and C2H6 are summarized in Table 5 for the detected wildfire pollution events from400

BONA and BOAS at all sites. Similar enhancement ratios of HCN and C2H6 are observed at Eureka and Thule for both BONA

and BOAS. This similarity is expected due to the close proximity of these sites. For Kiruna, slightly lower mean enhancement

ratios of HCN were observed of 0.005 for both BONA and BOAS. The enhancement ratio of C2H6 at Kiruna is greater than

Eureka and Thule, which likely represents the longer travel times of the plume resulting in the dilution of the plume with the

background, which can be interpreted as follows. Assuming lifetimes of CO, HCN and C2H6 of 30, 75 and 45 days following405

Viatte et al. (2013, 2015) and Lutsch et al. (2016), the enhancement ratio (EnhR) is given with respect to the emission ratio

(ER):

EnhRX = ERX ·
exp

(
− t
τX

)

exp
(
− t
τCO

) . (8)

It is easily seen from Equation 8 that the enhancement ratios of HCN and C2H6 would increase with longer plume travel times

t. For example, assuming a 7 day travel time, the enhancement ratios of HCN and C2H6 would be a factor of 1.15 and 1.08410

greater than their respective emission ratio. For a 14 day travel time, the enhancement ratios of HCN and C2H6 would increase

by a factor of 1.32 and 1.16, respectively, from their respective emission ratios. However, this is neglecting the influence of

plume dilution. With longer travel times, the plume is likely to mix with the background resulting in the enhancement ratios

tending to background values. Therefore, the enhancement ratio of C2H6 would likely be greater than the enhancement ratio

of HCN as a result of the greater mean columns of C2H6 in comparison to HCN observed at all sites, as illustrated in Figures415

3 and 4.

With the exception of Toronto, which is likely influenced by local HCN sources, the greatest HCN enhancement ratios are

observed at Eureka and Thule, with greater values for the BOAS events, 0.008 and 0.009 for Eureka and Thule, respectively. It

is possible that this could reflect the greater HCN emissions of BOAS due to the substantial fraction of peat burning from these

events (Yurganov et al., 2011; R’Honi et al., 2013). Lower enhancement ratios of HCN are observed at all other sites (except420

Toronto) for both BONA and BOAS sources. The lower enhancement ratios of HCN likely reflect the longer travel times to

these sites and the dilution of the plume as described above.

Episodic wildfire pollution events at all sites are attributed to either BONA or BOAS sources, with two detected events

from SEAS at Jungfraujoch. Temporal correlation of events amongst all sites is observed, with events occurring near in time at

different sites is attributed to the same source. Particularly evident are the 2012 Siberian wildfires (Kozlov et al., 2014; Teakles425

et al., 2017) observed at several sites and attributed to BOAS. Similarly, the 2017 Canadian wildfires (Khaykin et al., 2018;

Peterson et al., 2018; Kirchmeier-Young et al., 2019; Lutsch et al., 2019) are also observed at a number of sites. Although,
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the majority of detected events from 2003-2018 are attributed to BOAS, from 2013-2018 there is an observed increase in the

number of events attributed to BONA, with 24 BONA and 14 BOAS events detected during this period amongst all sites. Prior

to 2013, 17 BONA and 37 BOAS events were detected. The recent increase in BONA events could be indicative of changes430

in large-scale climatic patterns (Macias Fauria and Johnson, 2008) resulting in an increase in lighting-induced wildfires (Ma-

cias Fauria and Johnson, 2006; Veraverbeke et al., 2017). However, this apparent increase in BONA events does not take into

account the possibility of missed detections due to instrument downtime or cloudy sky conditions. Contributions of the biomass

burning source regions to CO tropospheric columns at each site will be discussed in the following section.

435

3.4 Wildfire Contribution to CO

The GEOS-Chem tagged CO simulation provides a means of evaluating the contribution of CO from anthropogenic, chemical

and biomass burning sources to the measured CO columns at each FTIR site. Figures 12 to 15 show the daily-averaged

GEOS-Chem and FTIR CO tropospheric columns (surface-12.71 km) for the simulation period from 2003-2018. The relative

contribution of biomass burning tracers are also shown. Biomass burning tracers with a mean contribution of less than 3% are440

not shown. For all GEOS-Chem tagged CO tracers, the partial column profile was linearly interpolated onto the FTIR retrieval

grid to account for the differences in surface elevation of the model and FTIR sites.

For all sites, the oxidation of CH4 is the greatest contribution to the tropospheric CO column as illustrated in Figure 11. The

magnitude of this source is similar amongst all sites, with the exception of Zugspitze and Jungfraujoch due to their high altitude.

Anthropogenic Asian CO sources exhibit the greatest seasonal amplitude at all sites, due to the magnitude of the emissions445

and the influence of seasonally variable transport (Klonecki, 2003; Stohl et al., 2006; Fisher et al., 2010). European and North

American anthropogenic sources show a similar seasonal cycle but smaller in amplitude in comparison to the Asian source. Of

note, at Zugspitze and Jungfraujoch, comparable contributions from anthropogenic sources in Asia, North America, Europe

and the rest of the world are observed. The oxidation of NMVOCs is a considerable source at all sites, with little seasonal

dependence. A slight increase in the NMVOC contribution is observed in the summertime, particularly in July and August, as450

a result of emissions of NMVOC from biogenic sources and wildfires (Guenther et al., 2000; Wentworth et al., 2018).

Biomass burning sources of CO exhibit the greatest differences amongst sites as seen in Figure 11. For most sites, the

onset of the biomass burning contribution begins in May with a maximum in August. Similar to the anthropogenic influence,

Zugspitze and Jungfraujoch are generally isolated from the direct influence of biomass burning emissions and only show a

minor enhancement in the summer. For Rikubetsu, the onset of the biomass burning contributions is observed earlier than for455

the other sites beginning in March as a result of the influence of Asian biomass burning sources (CEAS, SEAS and EQAS),

with slight influence in the summer for boreal emissions from BOAS. The contributions of the biomass burning sources to each

site with respect to the results of Section 3.3 are discussed below.
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3.4.1 High-Arctic Sites

The high-Arctic sites of Eureka, Ny-Ålesund and Thule illustrate strong summertime enhancements of CO and HCN as seen460

in Figures 2 and 3, with a moderate enhancement of C2H6 shown in Figure 4. These enhancements have a maximum in July

and August and from Figure 12, it is observed that the enhancements are largely due to the influence of BONA and BOAS

wildfires. Wildfires in temperate regions (TENA and CEAS) are a small contribution to the CO tropospheric column (<5%) but

do not contribute to the detected episodic enhancements. A moderate contribution to CO from CEAS and SEAS is observed,

but these are not a source of anomalous enhancements.465

Similar contributions are observed for BONA and BOAS among the high-Arctic sites, with a stronger influence from BONA

to Eureka and Thule resulting in episodic enhancements of CO contributing greater than 40% to the CO tropospheric column.

The strong influence of these sources is the result of the proximity of the high-Arctic sites to these source regions, as well as the

efficient summertime isentropic transport (Stohl, 2006). As a result, the direct influence of wildfire plumes at the high-Arctic

sites is observed in the FTIR time series, where the effects of plume dilution are minimal.470

Furthermore, an early onset in April of the BOAS contribution is observed and is likely the result of the contribution from

Siberian wildfires. Siberian wildfires are associated with low-level injected emissions, mainly within the planetary boundary

layer and lower free troposphere (Val Martin et al., 2018). The low-level injection of these emissions and the high latitudes of

the sources favour efficient transport to the Arctic (Stohl, 2006). In contrast, the Asian sources, CEAS and SEAS, show minor

contributions to the CO tropospheric columns at the high-Arctic sites. Transport of these emissions to the Arctic are limited due475

to the higher potential temperature of these regions in the summertime, preventing isentropic transport to the Arctic (Klonecki,

2003; Stohl, 2006).

3.4.2 Arctic Sites

For the high-latitude European sites Kiruna and St. Petersburg, smaller contributions to CO from BONA and BOAS sources

are observed, with peak contributions ranging from approximately 5 to 44% for BONA and 12 to 37% for BOAS, with slightly480

smaller contributions at Kiruna. The smaller contributions from these sites in comparison to the high-Arctic sites is partly

due to the greater distances from the wildfire sources. The transport of emissions to these sites is a result of long-range

westerly transport that generally exceeds 10 days (Damoah et al., 2004). Because of the long travel times, the plume is often

diluted, and therefore, does not generally lead to the episodic enhancements observed at the high-Arctic sites. In contrast, Poker

Flat is predominantly influenced by Alaskan wildfires, with contributions to the CO tropospheric column exceeding 50% in485

many cases. Similarly, the proximity of Poker Flat to BOAS sources makes BOAS a significant contributor to episodic CO

enhancements, comparable to the local BONA source.

Similar to the high-Arctic sites, contributions from TENA, CEAS and SEAS to the Arctic sites are minimal and do not

contribute to the episodic enhancements of CO, HCN and C2H6 detected in the FTIR time series. However, Poker Flat and St.

Petersburg generally exhibit greater contributions from CEAS. For Poker Flat, this is the result of Asian outflow transporting490

emissions from Asian over the Atlantic to Alaska. For St. Petersburg, the proximity to the CEAS sources makes it susceptible
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to this source. Particularly evident is the large enhancement in July and August of 2010 due to wildfires in the Moscow region

(Konovalov et al., 2011; Witte et al., 2011; Yurganov et al., 2011) although not detected in the FTIR time series as there were

no measurements during that period.

3.4.3 Alpine Sites495

The alpine sites, Zugspitze and Jungfraujoch shown in Figure 14, differ the most from the other sites considered in this

study as a result of their high altitude. It is seen that Zugspitze and Jungfraujoch are most strongly influenced by BOAS,

with a mean seasonal maximum contribution of approximately 14% at both sites. The contribution of BOAS emissions to

the enhanced columns at Zugspitze and Jungfraujoch are due to hemispheric-scale transport (Damoah et al., 2004), leading

to a perturbation to background concentrations of each species. As a result, the enhancements detected in the FTIR time500

series or GEOS-Chem do not result in the large, episodic enhancements observed at the high-Arctic sites. The contributions

from trans-Atlantic transport of BONA emissions, however, exhibit these anomalous enhancements on occasion. Particularly

evident are the BONA wildfires of 2013-2015 and 2018. Emissions from boreal Canadian wildfires may be injected into the

free troposphere (Val Martin et al., 2018) and in some cases the lower stratosphere (Fromm et al., 2000; Khaykin et al., 2018;

Peterson et al., 2018) which may enable the efficient transport of the plume over inter-continental scales (Heilman et al., 2014).505

SEAS emissions are a larger contributor to CO enhancements for Zugspitze and Jungfraujoch than for the Arctic or high-

Arctic sites. However, such enhancements are not observed in the FTIR time series as the contribution from SEAS is small

in comparison to Asian anthropogenic sources as illustrated in Figure 11. Transport of Asian biomass burning CO emissions

to Europe had been identified in the springtime by Petetin et al. (2018) and attributed to uplifting of emissions into the free

troposphere and efficient transport of the westerlies (Bey et al., 2001a). In all cases, Zugspitze and Jungfraujoch are most510

susceptible to emissions that reach the free troposphere where long-range transport is favoured (Petetin et al., 2018).

3.4.4 Mid-latitude Sites

Anomalous enhancements in the Rikubetsu time series are dominated by the outflow of BOAS emissions that begin in early

springtime and persist throughout the summer and autumn. Episodic BOAS enhancements are observed annually, with contri-

butions that generally exceed 20% and are larger than 50% in many years. The greatest enhancement from BOAS was observed515

in 2003 as result of the exceptional emissions from Siberia wildfires (Jaffe et al., 2004; Ikeda and Tanimoto, 2015). Although

the contribution from BOAS at Rikubetsu is highly variable between years, anomalous enhancements are observed annually

in the GEOS-Chem time series, while detection of events in the FTIR time series is limited by the temporal sampling of the

FTIR instrument. CEAS and SEAS have moderate contributions (∼10%) to the CO tropospheric column at Rikubetsu in the

spring and fall although the influence of these sources are often masked by the greater BOAS emissions during these periods.520

Other biomass burning sources have minimal contributions and Asian anthropogenic sources are dominant throughout the year

as shown in Figure 11.

Toronto is most strongly influenced by wildfires of BONA, with detected events in the FTIR time series including 2014

from the Northwest Territories wildfires (Lutsch et al., 2016; Kochtubajda et al., 2019), 2015 from wildfires in Saskatchewan
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(Dreessen et al., 2016) and the 2017 British Columbia wildfires (Peterson et al., 2018). Although it is in close proximity525

to TENA sources, mainly from the Western and Southern United States, Toronto is minimally influenced by TENA as the

magnitude of these emissions is much smaller than for BONA. Background contributions from CEAS and SEAS are also

observed in the springtime although the contribution from Asian anthropogenic sources is dominant. BOAS is also a significant

contribution to CO at Toronto in the summertime, but does not generally result in anomalous enhancements as a result of the

longer transport times from this region. The 2018 enhancements were attributed to BOAS, while in June 2012, enhancements530

were present in the FTIR time series and appear to occur simultaneously with the large BOAS contribution (>30%). Minor

contributions (<5%) from CEAS are observed in the springtime and autumn, while a moderate influence from SEAS of∼10%

is observed in the spring.

3.5 GEOS-Chem to FTIR CO Comparison

The GEOS-Chem CO partial column profiles are smoothed by the normalized FTIR CO total column averaging kernel follow-535

ing Rodgers and Connor (2003):

x̂m = xa + aT (xm−xa) , (9)

where x̂m is the smoothed model total column, xa is the FTIR a priori total column, xm is the model partial column profile,

a is the FTIR total column averaging kernel, and xa is the FTIR a priori partial column profile. Although the smoothing

has a minor influence on the smoothed partial column (∼1%) it is performed here to mitigate any biases as a result of the a540

priori profile. The GEOS-Chem CO profiles, FTIR CO profiles and total column averaging kernels are daily averaged and the

daily averaged GEOS-Chem profiles are subsequently smoothed. Correlations of the smoothed GEOS-Chem and FTIR CO

tropospheric partial columns are shown in Figure 16.

For all sites, moderate to strong linear correlations are observed with correlation coefficients (r) ranging from a minimum

of 0.66 for Toronto to a maximum of 0.89 at Thule. The slope of the linear regression is indicative of the GEOS-Chem bias545

relative to the FTIR measurements, with a slope greater than 1.0 representing a high-bias and a slope less than 1.0 representative

of a low-bias. For all sites, GEOS-Chem has a low bias as seen in Figure 16. The slopes range from a minimum of 0.49 at

Jungfraujoch to a maximum of 0.84 at both St. Petersburg and Rikubetsu.

The underestimation of GEOS-Chem CO is common amongst global CTMs as a result of errors in emissions, transport, and

biases in the OH concentrations (Shindell et al., 2006). It is likely that the consistent underestimation of GEOS-Chem CO at550

all sites is partly due to a high bias of OH (Muller et al., 2018). Seasonal variability of the GEOS-Chem bias is observed as

shown in Figure 17. The consistent underestimation of GEOS-Chem at Zugspitze and Jungfraujoch (as shown in Figure 17)

may be the result of excessive stratosphere-to-troposphere exchange (Fischer et al., 2000; Hoor et al., 2002; Pan et al., 2004)

contributed by the coarse model resolution, resulting in a low bias of CO in the upper troposphere. A similar underestimation of

GEOS-Chem CO in a full-chemistry simulation in comparison to Jungfraujoch FTIR measurements was observed by Té et al.555

(2016). The high altitude of Zugspitze and Jungfraujoch makes these sites more susceptible to this bias in comparison to the
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lower altitude sites (Ordóñez et al., 2007). The underestimation at Toronto, and the lower correlation (0.66) than all other sites

is possibly the result of the temporal and spatial variability of CO being not well captured due to the coarse model resolution

(2◦×2.5◦).

Seasonal variability of the GEOS-Chem minus FTIR relative difference is also observed as shown in Figure 17 and tabulated560

in Table 6. The representation of the seasonal variability of transport at mid-latitudes and errors in the seasonality are likely to

be contributing factors to the variability of the GEOS-Chem minus FTIR CO difference. However, biomass burning emissions

are also seasonally dependent and underestimation of GEOS-Chem CO may be partially reflective of an underestimation of

GFAS emissions. Particularly evident is the greater underestimation of GEOS-Chem at Rikubetsu in the summer months,

during the boreal wildfire season. Eureka and Thule exhibit a greater underestimation of GEOS-Chem in July and August565

when the boreal wildfire influence is greatest as shown in Figure 12. A similar decrease in the GEOS-Chem minus FTIR

relative difference is also observed at Kiruna, Poker Flat, St. Petersburg and Toronto. These differences could be indicative of

the unresolved plume transport in the model as a result of its coarse vertical resolution (Rastigejev et al., 2010; Eastham and

Jacob, 2017). Additionally, the summertime low CO bias in GEOS-Chem may also be contributed by an underestimation of

the secondary production of CO from biogenic emissions of NMVOCs.570

4 Conclusions

Boreal wildfires of North America (BONA) and Asia (BOAS) were found to be the greatest contributors to episodic CO en-

hancements at ten Northern hemisphere FTIR sites: Eureka, Ny-Ålesund, Thule, Kiruna, Poker Flat, St. Petersburg, Zugspitze,

Jungfraujoch, Toronto and Rikubetsu. Wildfire pollution events were identified by detection of enhancements of CO in the

FTIR time series. With the exception of Ny-Ålesund, Poker Flat and Rikubetsu, detected CO enhancements were correlated575

with coincident measurements of HCN and C2H6 to determine their enhancement ratios, providing evidence for the detection

of wildfire pollution events. The GEOS-Chem tagged CO simulation allowed for source attribution of the detected events and

for the source contribution to CO at each site to be evaluated.

The greatest numbers of FTIR enhancements were observed at Eureka (19) and Thule (17) due to their proximity to BONA

and BOAS, with both sources contributing to greater than 40% of the CO tropospheric partial column in many cases. A580

similar influence of BONA and BOAS wildfires was observed at Ny-Ålesund, but the sparsity of the CO measurements limited

detection of events in the FTIR time series. Furthermore, the lack of coincident measurement of HCN and C2H6 did not allow

for enhancement ratios to be calculated for Ny-Ålesund.

Kiruna was also strongly influenced by the trans-Atlantic transport of BONA emissions and hemispheric transport of BOAS

emissions, which may contribute ∼5-40% of the CO tropospheric partial column during the summer months from June though585

September of each year. A similar contribution was observed at St. Petersburg, albeit lower in magnitude. The sparse measure-

ments of CO, HCN and C2H6 at Poker Flat limited detection of events in the FTIR time series. However, the GEOS-Chem

tagged CO simulation illustrated the strong influence of both BONA and BOAS sources at Poker Flat, which in several years

exceeded 60% of the CO tropospheric column.
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The Alpine sites, Zugspitze and Jungfraujoch, are isolated from major biomass burning sources, but on occasion are subject590

to the transport of both BONA and BOAS emissions which were detected in the FTIR time series at both sites. However, these

emissions are generally a small contribution to the tropospheric CO partial column (∼10%). Toronto was mainly influenced by

North American wildfires of BONA contributing∼10-20% of the CO column. Asian anthropogenic sources strongly influence

the CO background at Rikubetsu, which was also considerably influenced by BOAS wildfires.

The results of this study show the Northern Hemispheric influence of boreal wildfire emissions, which were detected using595

FTIR measurements of CO and the coincident measurements of HCN and C2H6. The inter-annual variability of boreal wildfire

emissions observed in the GEOS-Chem tagged CO simulation was also observed in the detected FTIR enhancements when

measurements were available. The detected FTIR enhancements from 2013-2018 were in most cases attributed to BONA,

consistent with the increase in the BONA contribution to CO during this period as observed in the GEOS-Chem time series.
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Table 2. Summary of the source regions used in the GEOS-Chem tagged CO simulation.

Type Name Description

Anthropogenic NA North America

EU Europe

AS Asia

ROW Rest of World

Biomass Burning BONA Boreal North America

TENA Temperate North America

CEAM Central America

NHSA Northern Hemisphere South America

SHSA Southern Hemisphere South America

EURO Europe

MIDE Middle East

NHAF Northern Hemisphere Africa

SHAF Southern Hemisphere Africa

BOAS Boreal Asia

CEAS Central East Asia

SEAS Southeast Asia

EQAS Equatorial Asia

AUST Australia and New Zealand

Other CH4 Methane oxidation

NMVOC Non-methane volatile organic compound oxidation
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Table 3. Summary of wildfire pollution event detection criteria for all sites.

Site CO Enhancementa Event Separationb EnhRHCN
c EnhRC2H6

d

Detection Threshold [σ] [days] Minimum r Minimum r

Eureka 1.0 7 0.5 0.5

Ny-Ålesunde 1.0 14 – –

Thule 1.0 7 0.5 0.5

Kiruna 1.0 7 0.5 0.5

Poker Flate 1.0 7 – –

St. Petersburg 1.0 10 0.5 0.5

Zugspitze 1.0 7 0.5 0.5

Jungfraujoch 1.0 7 0.5 0.5

Toronto 1.0 8 0.5 0.5

Rikubetsue 2.0 14 – –

a Threshold for detection of enhanced CO measurements.
b Time separation between detected CO enhancements to categorize individual events.
c Minimum correlation coefficient r for EnhRHCN.
d Minimum correlation coefficient r for EnhRC2H6 .
e No criteria applied for enhancements ratios due to a lack of coincident CO, HCN and C2H6.
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Table 4. Number of measurements of CO, HCN and C2H6 for all sites from 2003-2018 unless otherwise stated. Number of pairs of HCN

and C2H6 with CO in the 1-hr window is also shown with the mean time difference between paired measurements (∆t).

Site CO HCN HCN:CO ∆t [min] C2H6 C2H6:CO ∆t [min]

Eurekaa 5411 4674 4352 10 3578 3316 11
NyAlesund 1349 1115 512 28 1129 541 25
Thule 6369 2586 1399 22 3894 1782 11
Kiruna 1999 1866 1597 15 2650 1883 32
Poker Flatb 2602 1791 1432 24 1638 1343 28
St. Petersburg c 4289 3846 2552 31 4154 3706 0d

Jungfraujoch 4844 3244 2409 31 11372 6572 34
Zugspitzee 19445 903 895 17 13539 13307 8
Toronto 3779 2978 2104 33 4276 2877 22
Rikubetsu 1199 1105 784 19 1057 633 31

a From 2006-2018.
b From 2003-2011.
c From 2009-2018.
d St. Petersburg uses two non-standard broadband filters and therefore CO and C2H6 measurements occur simultaneously.
e Zugspitze HCN measurements began in 2015 while CO and C2H6 measurements are reported from 2003-2018.
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Table 5. Mean enhancement ratios of HCN and C2H6 for BONA and BOAS for all detected wildfire

events. The value in parenthesis is the 1σ standard deviation of the mean. The number of detected events

for each site and source are also given.

BONA BOAS

Site Nr. HCN C2H6 Nr. HCN C2H6

Eureka 9 0.007 (0.003) 0.012 (0.005) 10 0.008 (0.004) 0.013 (0.003)

Ny-Ålesund 9 – – 6 – –

Thule 13 0.007 (0.004) 0.010 (0.003) 4 0.009 (0.002) 0.012 (0.003)

Kiruna 4 0.005 (0.002) 0.014 (0.010) 8 0.005 (0.001) 0.016 (0.010)

Poker Flat 8 – – 5 – –

St. Petersburg 1 0.004 0.005 3 0.004 (0.001) 0.019 (0.014)

Zugspitze 1 0.003 0.012 1 0.001 0.001

Jungfraujoch 8 0.006 (0.005) 0.015 (0.014) 9 0.004 (0.002) 0.012 (0.004)

Toronto 4 0.010 (0.008) 0.023 (0.008) 1 0.007 0.028

Rikubetsu 0 – – 11 – –

1105
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Figure 1. Locations of ground-based FTIR sites used in this study. The biomass burning regions (shaded), and anthropogenic source regions

(black rectangles) used for the GEOS-Chem tagged CO simulation are also shown and summarized in Table 2.
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Figure 2. Weekly-mean CO tropospheric partial columns taken over all years of measurements at each site. The years included in the mean

are listed in the top right corner of each panel. The shaded region represents a 1σ standard deviation from the mean.
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Figure 3. Same as Fig. 2 but for HCN.
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Figure 4. Same as Fig. 2 but for C2H6.
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Figure 5. Mean retrieved (red) and a priori (black) VMR profiles of CO taken over all years of measurements at each site. The shaded region

indicates the 1σ standard deviation from the mean. The circle markers indicate the layer centers of the FTIR vertical retrieval grid.
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Figure 6. Same as Fig. 5 but for HCN.
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Figure 7. Same as Fig. 5 but for C2H6
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Figure 8. Mean CO, HCN and C2H6 normalized total column averaging kernels in units of molec cm−2/ molec cm−2, taken over all years of

measurements at each site. The shaded region indicates a 1σ standard deviation from the mean. The circle markers indicate the layer centers

of the FTIR vertical retrieval grid.
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Figure 11. Weekly-mean GEOS-Chem tagged CO tracer tropospheric columns. The tagged CO tracer correspond to those listed in Table 2.

The total biomass burning (BB) contribution is shown and is the sum of all biomass burning tracers from Table 2.
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Figure 12. Daily-mean CO tropospheric column time series for FTIR and GEOS-Chem (top panel) from 2003-2018 for the high-Arctic

sites: Eureka, Ny-Ålesund and Thule. The bottom panel shows the relative contribution (%) of the BONA, TENA, BOAS, CEAS and SEAS

CO tracers in the GEOS-Chem simulation to the total CO tropospheric column. The grey shaded regions indicate periods of fire-affected

measurements identified in the FTIR time series and summarized in Figure 10

.
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Figure 13. Same as Figure 12 but for the Arctic sites: Kiruna, Poker Flat and St. Petersburg .
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Figure 14. Same as Figure 12 but for the alpine sites: Zugspitze and Jungfraujoch.
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Figure 15. Same as Figure 12 but for the mid-latitude sites: Rikubetsu and Toronto.
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Figure 16. Correlation of daily-averaged GEOS-Chem and FTIR CO tropospheric partial columns for all sites from 2003-2018. The linear

correlation coefficient (r), linear equation of the regression, and number of measurements (N) are also shown. The black dashed line is the

one-to-one correlation and the solid red line is the fitted linear regression.
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Figure 17. Box-and-whiskers plot of the monthly-mean relative difference (%) of GEOS-Chem and FTIR CO taken over all years from

2003-2018. The red line indicates the mean and the black square is the median. The shaded boxes represent the interquartile range of the data

and the whisker represent the range. The mean relative difference of all data is listed in the top left corner.
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